The comet ISON. © NASA

Some comets are not randomly distributed

Hi there! Everybody knows the comets, which may show us impressive tails, when they approach our Sun. This is due to what we call cometary activity. You can find comets in many places in the Solar System. Today we will focus on the 9 ones, which are located in the Main Asteroid Belt, i.e. between the orbits of Mars and Jupiter. This is the opportunity to present you Orbital alignment of Main-belt comets, by Yoonyoung Kim, Yougmin JeongAhn, and Henry H. Hsieh. This study has recently been published in The Astronomical Journal.

Comets in the Solar System

A comet is a small body, which presents some activity. This activity manifests as 2 tails, which are a gas tail and a dust tail. These two tails have different directions because the dust is heavier than the gas, and so is differently affected by the Sun. The Sun is actually responsible for at least part of this activity: if the body has water ice at its surface, the proximity of the Sun heats it enough to sublimate it.

We distinguish different classes of comets, from their orbital motion. The short-period comets have a period below 200 years, i.e. they make a close approach to the Sun periodically, with less than 200 years between two approaches. This is for instance the case of the famous Halley comet, or 1P/Halley, which period is 75 years. The comets with a period smaller than 20 years are called Jupiter-family comets, their orbits are strongly affected by the gravitational perturbation of Jupiter.
And we also have long-period comets, with periods larger than 200 years, up to several thousands of years, or even more… The extreme case is the one of the parabolic and hyperbolic comets, which eccentricities are close to or larger than 1. In such a case, we just see the comet once.

The Jupiter-family comets should originate from the Kuiper Belt, and have been so strongly perturbed by Jupiter that their semimajor axes became much smaller, reducing their orbital periods. However, we attribute the origin of the longer periods comets to the Oort cloud, which is thought to lie between 50,000 and 200,000 astronomical units (remember: the Sun-Earth distance is 1 AU). The comets we are interested in today are much closer, in the Main-Belt of asteroids.

The Main-Belt Comets

Main Belt Comets (MBCs) are comets, which are located in the asteroid belt. As such, they present some cometary activity. It appears that there is no general agreement on the way to identify them. Some asteroids present an activity, which is mainly driven by dust, and not by sublimation of water ice, so it could be relevant to call them active asteroids instead of comets. But they may have some sublimation driven activity as well.

The first identified MBC is 133P/Elst-Pizarro, which has been discovered in 1979 and is since then identified as an asteroid… and also as a comet since 1996. I mean, this is officially both a comet and an asteroid. The authors considered 9 MBC, there could be a little more of them, since classifying them is not that easy.

The comet Elst-Pizarro seen at La Silla Observatory. © ESO
The comet Elst-Pizarro seen at La Silla Observatory. © ESO

The MBC should originate from the Main-Belt. In this study, we are interested in the orbital dynamics. Let us talk about orbital elements.

Proper, forced, and osculating elements

As I have already told you in a previous post, we usually describe the orbit of a planetary body with 6 orbital elements, which characterize the ellipse drawn by the trajectory.

These orbital elements are

  • the semi-major axes (which would be the distance to the Sun, if the orbit were circular… this remains almost true for slightly eccentric orbits),
  • the mean longitude,
  • the eccentricity of the trajectory (0 means circular, the eccentricity must be smaller than 1 for the orbit to be elliptic),
  • the pericentre, i.e. location of the point of the trajectory, where the distance to the Sun is minimal,
  • the inclination, with respect to a given reference plane,
  • the ascending node, which locates the intersection between the reference plane and the orbit.

We call them osculating elements. These are the elements that the orbit would have at a given time, if it were exactly an ellipse. The real trajectory is very close to an ellipse, actually.

We will just keep in mind the two couples (eccentricity, pericentre), and (inclination, ascending node). Because these variables are coupled: without eccentricity, the pericentre is irrelevant, since the distance Sun-body is constant. And without inclination, the ascending node is irrelevant, since the whole trajectory is in the reference plane.

And these variables are the sums of a proper and a forced component. Imagine you are a MBC. You want to have your own motion around the Sun. This gives you the proper (or free) component, which is actually ruled by your initial conditions, and the interaction with the Sun (what we call the 2-body, or Kepler, problem). Unfortunately for you, there is this big guy perturbing your motion (Jupiter is his name). He is heavy enough to force your motion to follow his. This gives you a forced motion, and the actual motion is the sum of the proper and the forced ones. The forced motion tends to align your pericentre and your ascending node with the ones of Jupiter. The authors studied these motions.

The Main-Belt Comets are clustered

And their conclusions is that the MBC are clustered, in particular the pericentres. They tend to be aligned with the one of Jupiter. This could have been anticipated, but the authors found something more: the MBC are more clustered than the others asteroids, which lie in that region of the outer main-belt.

For quantifying this more clustered, they ran several statistical tests, which I do not want to detail (the Kolmogorov-Smirnov test, the F-test, and the Watson’s U2 test). These tests show that this excess of clustering happened very unlikely by chance. In other words, there is something. And this is more obvious for comets, for which the sublimation activity is overwhelming. This permits the authors to make a link between this activity, i.e. the presence of water ice, and this clustering. And to suggest favorable conditions for the detection of cometary activity for Main-Belt objects.

Where are the other MBCs?

Based on the result that the eccentricities of MBCs are secularly excited by Jupiter, the authors suggest to look for them in the fall night sky, when Jupiter’s perihelion is at opposition.
We would not necessarily be looking for new bodies, but also for cometary activity of already known bodies. Because of the variations of the distance with the Sun, the sublimation of water ice is not a permanent phenomenon. Remember that Elst-Pizarro has been classified as a comet 17 years after its discovery.

Clustering of TNOs suggests the existence of the Planet Nine

I would like to finish with a reminder that the Planet Nine was hinted that way, in 2016. A clustering among the orbits of Trans-Neptunian Objects was statistically proven. Since then, the Planet Nine has not been detected (yet), but other clues have suggested its presence, like the obliquity of the Sun.

More generally, I would say that big objects strongly affect the orbits of small ones, and in observing the small ones, then you can deduce something on the big ones!

The study and its authors

And that’s it for today! Please do not forget to comment. You can also subscribe to the RSS feed, and follow me on Twitter, Facebook, Instagram, and Pinterest.

Leave a Reply

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.