Tag Archives: asteroids

The dynamics of the Quasi-Satellites

Hi there! After reading this post, you will know all you need to know on the dynamics of quasi-satellites. This is the opportunity to present you On the co-orbital motion in the planar restricted three-body problem: the quasi-satellite motion revisited, by Alexandre Pousse, Philippe Robutel and Alain Vienne. This study has recently been published in Celestial Mechanics and Dynamical Astronomy.

The 1:1 mean-motion resonance at small eccentricity

(see also here)

Imagine a pretty simple case: the Sun, a planet with a keplerian motion around (remember: its orbit is a static ellipse), and a very small third body. So small that you can neglect its mass, i.e. it does not affect the motion of the Sun and the planet. You know that the planet has no orbital eccentricity, i.e. the static ellipse serving as an orbit is actually a circle, and that the third body (let us call it the particle) has none either. Moreover, we want the particle to orbit in the same plane than the planet, and to have the same revolution period around the Sun. These are many conditions.
Under these circumstances, mathematics (you can call that celestial mechanics) show us that, in the reference frame which is rotating with the planet, there are two stable equilibriums 60° ahead and astern the planet. These two points are called L4 and L5 respectively. But that does not mean that the particle is necessary there. It can have small oscillations, called librations around these points, the resulting orbits being called tadpole orbits. It is even possible to have orbits enshrouding L4 and L5, this results in large librations orbits, called horseshoe orbits.

All of these configurations are stable. But remember: the planet is much less massive than the Sun, the particle is massless, the orbits are planar and circular… Things become tougher when we relax one of these assumptions. And the authors assumed that the particle had a significant eccentricity.

At high eccentricities: Quasi-satellites

Usually, increasing the eccentricity destabilizes you. This is still true here, i.e. co-orbital orbits are less stable when eccentric. But increasing the eccentricity also affects the dynamical structure of your problem in such a way that other dynamical configurations may appear. And this is the case here: you have an equilibrium where your planet lies.

Ugh, what does that mean? If you are circular, then your particle is at the center of your planet… Nope, impossible. But wait a minute: if you oscillate around this position without being there… yes, that looks like a satellite of the planet. But a satellite is under the influence of the planet, not of the star… To be dominated by the star, you should be far enough from the planet.

I feel the picture is coming… yes, you have a particle on an eccentric orbit around the star, the planet being in the orbit. And from the star, this looks like a satellite. Funny, isn’t it? And such bodies exist in the Solar System.

Orbit of a quasi-satellite. It follows the planet, but orbits the star.
Orbit of a quasi-satellite. It follows the planet, but orbits the star.

Known quasi-satellites

Venus has one known quasi-satellite, 2002 VE68. This is a 0.4-km body, which has been discovered in 2002. Like Venus, it orbits the Sun in 225 days, but has an orbital eccentricity of 0.41, while the one of Venus is 0.007. It is thought to be a quasi-satellite of Venus since 7,000 years, and should leave this configuration in some 500 years.

The Earth currently has several known quasi-satellites, see the following table:

Known quasi-satellites of the Earth
Name Eccentricity Inclination Stability
(164207) 2004 GU9 0.14 13.6° 1,000 y
(277810) 2006 FV35 0.38 7.1° 10,000 y
2013 LX28 0.45 50° 40,000 y
2014 OL339 0.46 10.2° 1,000 y
(469219) 2016 HO3 0.10 7.8° 400 y

These bodies are all smaller than 500 meters. Because of their significant eccentricities, they might encounter a planet, which would then affect their orbits in such a way that the co-orbital resonance would be destabilized. However, significant inclinations limit the risk of encounters. Some bodies switch between quasi-satellite and horseshoe configurations.

Here are the known quasi-satellites of Jupiter:

Known quasi-satellites of Jupiter
Name Eccentricity Inclination Stability
2001 QQ199 0.43 42.5° > 12,000 y
2004 AE9 0.65 1.6° > 12,000 y
329P/LINEAR-Catalina 0.68 21.5° > 500 y
295P/LINEAR 0.61 21.1° > 2,000 y

329P/LINEAR-Catalina and 295P/LINEAR being comets.

Moreover, Saturn and Neptune both have a confirmed quasi-satellite. For Saturn, 2001 BL41 should leave this orbit in about 130 years. It has an eccentricity of 0.29 and an inclination of 12.5°. For Neptune, (309239) 2007 RW10 is in this state since about 12,500 years, and should stay in it for the same duration. It has an orbital eccentricity of 0.3, an inclination of 36°, and a diameter of 250 km.

Understanding the dynamics

Unveiling the dynamical/mathematical structure which makes the presence of quasi-satellites possible is the challenge accepted by the authors. And they succeeded. This is based on mathematical calculation, in which you write down the equations of the problem, you expand them to retain only what is relevant, in making sure that you do not skip something significant, and you manipulate what you have kept…

The averaging process

The first step is to write the Hamiltonian of the restricted planar 3-body problem, i.e. the total energy of a system constituted by the Sun, the planet, and the massless particle. The dynamics is described by so-called Hamiltonian variables, which allow interesting mathematical properties…
Then you expand and keep what you need. One of the pillars of this process is the averaging process. When things go easy, i.e. when your system is not chaotic, you can describe the dynamics of the system as a sum of sinusoidal contributions. This is straightforward to figure out if you remember that the motions of the planets are somehow periodic. Somehow means that these motions are not exactly sinusoidal, but close to it. So, you expand it in series, in which other sinusoids (harmonics) appear. And you are particularly interested in the one involving λ-λ’, i.e. the difference between the mean longitude of the planet and the particle. This makes sense since they are in the co-orbital configuration, that particular angle should librate with pretty small oscillations around a given value, which is 60° for tadpole orbits, 180° for horseshoes, and 0° for quasi-satellites. Beside this, you have many small oscillations, in which you are not interested. Usually you can drop them in truncating your series, but actually you just average them, since they average to 0. This is why you can drop them.
To expand in series, you should do it among a small parameter, which is usually the eccentricity. This means that your orbit looks pretty like a circle, and the other terms of the series represent the difference with the circle. But here there is a problem: to get quasi-satellite orbits, your eccentricity should be large enough, which makes the analytical calculation tougher. In particular, it is difficult to guarantee their convergence. The authors by-passed this problem in making numerical averaging, i.e. they computed numerically the integrals of the variables of the motion over an orbital period.

Once they have done this, they get a simplified system, based on one degree-of-freedom only. This is a pair of action-angle variables, which will characterize your quasi-satellite orbit. This study also requires to identify the equilibriums of the system, i.e. to identify the existing stable orbits.


So, this study is full of mathematical calculations, aiming at revisiting this problem. The authors mention as possible perspective the study of resonances between the planets, which disturb the system, and the proper frequency of the quasi-satellite orbit. This is the oscillating frequency of the angle characterizing the orbit, and if it is equal to a frequency already present in the system, it could have an even more interesting dynamics, e.g. transit between different states (quasi-satellite / horsehoe,…).

To know more…

That’s it for today! Please do not forget to comment. You can also subscribe to the RSS feed, and follow me on Twitter and Facebook.

Our water comes from far away

Hi there! Can you imagine that our water does not originally come from the Earth, but from the outer Solar System? The study I present you today explains us how it came to us. This is Origin of water in the inner Solar System: Planetesimals scattered inward during Jupiter and Saturn’s rapid gas accretion by Sean Raymond and Andre Izidoro, which has recently been published in Icarus.

From the planetary nebula to the Solar System

There are several competing scenarios, which describe a possible path followed by the Solar System from its early state to its current one. But all agree that there was originally a protoplanetary disk, orbiting our Sun. It was constituted of small particles and gas. Some of the small particles accreted to form the giant planets, first as a massive core, then in accreting some gas around. The proto-Jupiter cleared a ring-shaped gap around its orbit in the disk, Saturn formed as well, the planets migrated, in interacting with the gas. How fast did they migrate? Inward? Outward? Both? Scenarios diverge. Anyway, the gas was eventually ejected, and the protoplanetary disk was essentially cleared, except when it is not. There remains the telluric planets, the giant planets, and the asteroids, many of them constituting the Main Belt, which lies between the orbits of Mars and Jupiter.
If you want to elaborate a fully consistent scenario of formation / evolution of the Solar System, you should match the observations as much as possible. This means matching the orbits of the existing objects, but not only. If you can match their chemistry as well, that is better.

No water below this line!

The origin of water is a mystery. You know that we have water on Earth. It seems that this water comes from the so-called C-type asteroids. These are carbonaceous asteroids, which contain a significant proportion of water, usually between 5 and 20%. This is somehow the same water as on Earth. In particular, it is consistent with the ratios D/H and 15N/14N present in our water. D is the deuterium, it is an isotope of hydrogen (H), while 15N and 14N are two isotopes of nitrogen (N).

These asteroids are mostly present close to the outer boundary of the Main Belt, i.e. around 3.5 AU. An important parameter of a planetary system is the snow line: below a given radius, the water cannot condensate into ice. That makes sense: the central star (in our case, the Sun) is pretty hot (usually more than pretty, actually…), and ice cannot survive in a hot environment. So, you have to take some distance. And the snow line of the Solar System is currently lose to 3.5 AU, where we can find these C-type asteroids. Very well, there is no problem…

But there is one: the location of the snow line changes during the formation of the Solar System, since it depends on the dynamical structure of the disk, i.e. eccentricity of the particles constituting it, turbulence in the gas, etc. in addition to the evolution of the central star, of course. To be honest with you, I have gone through some literature and I cannot tell you where the snow line was at a given date, it seems to me that this is still an open question. But the authors of this study, who are world experts of the question, say that the snow line was further than that when these C-types asteroids formed. I trust them.

And this raises an issue: the C-types asteroids, composed of at least 5% of water, have formed further than they are. This study explains us how they migrated inward, from their original location to their present one.

Planet encounter and gas drag populate the Asteroid Belt

The authors ran intensive numerical simulations, in which the asteroids are massless particles, but with a given radius. This seems weird, but this just means that the authors neglected the gravitational action of the asteroids on the giant planets. The reason why they gave them a size in that it influences the way the gas drag (remember: the early Solar System was full of gas) affects their orbits. This size actually proved to be a key parameter. So, these asteroids were affected by the gas and the giant planets, but in the state they were at that time, i.e. initially Jupiter and Saturn were just slowly accreting cores, and when these cores of solid material reached a critical size, then they were coated by a pretty rapid (over a few hundreds of kyr) accretion of gas. The authors considered only Jupiter in their first simulations, then Jupiter and Saturn, and finally the four giant planets. Their different parameters were:

  • the size of the asteroids (planetesimals),
  • the accretion velocity of the gas around Jupiter and Saturn,
  • the evolution scenario of the early Solar System. In particular, the way the giant planets migrated.

Simulating the formation of the planet actually affects the orbital evolution of the planetesimals, since the mass of the planets is increasing. The more massive the planet, the most deviated the asteroid.

And the authors succeed in putting C-type asteroids with this mechanism: when a planetesimal encounters a proto-planet (usually the proto-Jupiter), its eccentricity reaches high numbers, which threatens its orbital stability around the Sun. But the gas drag damps this eccentricity. So, these two effects compete, and when ideally balanced this results in asteroids in the Main-Belt, on low eccentric orbits. And the authors show that this works best for mid-sized asteroids, i.e. of the order of a few hundreds of km. Below, Jupiter ejects them very fast. Beyond, the gas drag is not efficient enough to damp the eccentricity. And this is consistent with the current observations, i.e. there is only one C-type asteroid larger than 1,000 km, this is the well-known Ceres.

However, the scenarios of evolution of the Solar System do not significantly affect this mechanism. So, it does not tell us how the giant planets migrated.

Once the water ice has reached the main asteroid belt, other mechanism (meteorites) carry it to the Earth, where it can survive thanks to our atmosphere.

Making the exoplanets habitable

This study proposes a mechanism of water delivery, which could be adapted to any planetary system. In particular, it tells us a way to make exoplanetary planets habitable. Probably more to come in the future.

To know more…

  • The study, presented by the first author (Sean N. Raymond) on his own blog,
  • The website of Sean N. Raymond,
  • The IAU page of Andre Izidoro.
  • And I would like to mention Pixabay, which provides free images, in particular the one of Cape Canaveral you see today. Is this shuttle going to fetch some water somewhere?

That’s it for today! Please do not forget to comment. You can also subscribe to the RSS feed, and follow me on Twitter and Facebook.

An asteroid pair

Hi there! Today I present you the study of an asteroid pair. Not a binary, a pair. A binary asteroid is a couple of asteroids which are gravitationally bound, while in pair, the asteroids are just neighbors, they do not live together… but have. The study is entitled Detailed analysis of the asteroid pair (6070) Rheinland and (54287) 2001 NQ8, by Vokrouhlický et al., and it has recently been published in The Astronomical Journal.

Asteroid pairs

I have presented asteroid families in a previous post. These are groups of asteroids which present common dynamical and physical properties. They can be in particular identified from the clustering of their proper elements, i.e. you express their orbital elements (semimajor axis, eccentricity, inclination, pericentre, …), you treat them properly so as to get rid off the gravitational disturbance of the planets, and you see that some of these bodies tend to group. This suggests that they constitute a collisional family, i.e. they were a unique body in the past, which has been destroyed by collisions.
An asteroid pair is something slightly different, since these are two bodies which present dynamical similarities in their osculating elements, i.e. before denoising them from the gravitational attraction of the planets. Of course, they would present similarities in their proper elements as well, but the fact that similarities can be detected in the osculating elements means that they are even closer than a family, i.e. the separation occurred later. Families younger than 1 Myr (1 million of years) are considered to be very young; the pair I present you today is much younger than that. How much? You have to read me before.
A pair suggests that only two bodies are involved. This suggests a non-collisional origin, more particularly an asteroid fission.

Asteroid fission

Imagine an asteroid with a very fast rotation. A rotation so fast that it would split the asteroid. We would then have two components, which would be gravitationally bound, and evolving… Depending on the energy involved, it could remain a stable binary asteroid, a secondary fission might occur, the two or three components may migrate away from each other… and in that case we would pair asteroid with very close elements of their heliocentric orbits.
It is thought that the YORP (Yarkovsky – O’Keefe – Radzievskii – Paddack) could trigger this rotational fission. This is a thermic effect which alter the rotation, and in some cases, in particular when the satellite has an irregular shape, it could accelerate it. Until fission.
Thermic effects are particularly efficient when the Sun is close, which means that NEA (Near Earth Asteroids) are more likely to be destroyed by this process than Main Belt asteroids. Here, we deal with Main Belt asteroids.

The pair 6070-54827 (Rheinland – 2001 NQ8)

The following table present properties of Rheinland and 2001 NQ8. The orbital elements are at Epoch 2458000.5, i.e. September 4th 2017. They come from the JPL Small-Body Database Browser.

(6070) Rheinland (54827) 2001 NQ8
Semimajor axis (AU) 2.3874015732216 2.387149297807496
Eccentricity 0.2114524962733347 0.211262507795103
Inclination 3.129675305535938° 3.128927421642917°
Node 83.94746016534368° 83.97704257098502°
Pericentre 292.7043398319871° 292.4915004062336°
Orbital period 1347.369277588708 d (3.69 y) 1347.155719572348 d (3.69 y)
Magnitude 13.8 15.5
Discovery 1991 2001

Beside their magnitudes, i.e. Rheinland is much brighter than 2001 NQ8, this is why it was discovered 10 years earlier, we can see that all the slow orbital elements (i.e. all of them, except the longitude) are very close, which strongly suggests they shared the same orbit. Not only their orbits have the same shape, but they also have the same orientation.

Shapes and rotations from lightcurves

A useful tool for determining the rotation and shape of an asteroid is the lightcurve. The object reflects the incident Solar light, and the way it reflects it will tell us something on its location, its shape, and its orientation. You can imagine that the surfaces of these bodies are not exclusively composed of smooth terrain, and irregularities (impact basins, mountains,…) will result in a different Solar flux, which also depends on the phase, i.e. the angle between the normale of the surface and the asteroid – Sun direction… i.e. depends whether you see the Sun at the zenith or close to the horizon. This is why recording the light from the asteroid at different dates tell us something. You can see below an example of lightcurve for 2001 NQ8.

Example of lightcurve for 2001 NQ8, observed by Vokrouhlický et al.

Recording such a lightcurve is not an easy task, since the photometric measurements should be denoised, otherwise you cannot compare them and interpret the lightcurve. You have to compensate for the variations of the luminosity of the sky during the observation (how far is the Moon?), of the thickness of the atmosphere (are we close to the horizon?), of the heterogeneity of the CCD sensors (you can compensate that in measuring the response of a uniform surface). And the weather should be good enough.

Once you have done that, you get a lightcurve alike the one above. We can see 3 maxima and 2 minima. Then the whole set of lightcurves is put into a computational machinery which will give you the parameters that best match the observations, i.e. periods of rotation, orientation of the spin pole at a given date, and shape… or at least a diameter. In this study, the authors already had the informations for Rheinland but confirmed them with new observations, and produced the diameter and rotation parameters for 2001 NQ8. And here are the results:

(6070) Rheinland (54827) 2001 NQ8
Diameter (km) 4.4 ± 0.6 2.2 ± 0.3
Spin period (h) 4.2737137 ± 0.0000005 5.877186 ± 0.000002
Spin pole (124°,-87°) (72°,-49°) or (242°,-46°)

We can see rapid rotation periods, as it is often the case for asteroids. The locations of the poles mean that their rotations
are retrograde, with respect to their orbital motions. Moreover, two solutions best match the pole of 2001 NQ8.

Dating the fission

The other aspect of this study is a numerical simulation of the orbital motion of these two objects, backward in time, to date their separation. Actually, the authors considered 5,000 clones of each of the two objects, to make their results statistically relevant.
They not only considered the gravitational interactions with other objects of the Solar System, but also the Yarkovsky effect, i.e. a thermal pull due to the Sun, which depends on the reflectivity of the asteroids, and favors their separation. For that, they propose new equations implementing this effect. They also simulated the variations of the spin pole orientation, since it affects the thermal acceleration.

And here is the result: the fission probably occurred 16,340 ± 40 years ago.


Why doing that? Because what we see is the outcome of an asteroid fission, which occurred recently. The authors honestly admit that this result could be refined in the future, depending on

  • Possible future measurements of the Yarkovsky acceleration of one or two of these bodies,
  • The consideration of the mutual interactions between Rheinland and 2001 NQ8,
  • Refinements of the presented measurements,
  • Discovery of a third member?

To date the fission, they dated a close approach between these two bodies. They also investigated the possibility that that
close approach, some 16,000 years from now, could have not been the right one, and that the fission could have been much older. For that, they ran long-term simulations, which suggest that older close approaches should have been less close: if the pair were older, Yarkovsky would have separated it more.

To know more

And that’s it for today! Please do not forget to comment. You can also subscribe to the RSS feed, and follow me on Twitter and Facebook.

On the stability of Chariklo

Hi there! Do you remember Chariklo? You know, this asteroid with rings (see this post on their formation). Today, we will not speak on the formation of the rings, but of the asteroid itself. I present you the paper entitled The dynamical history of Chariklo and its rings, by J. Wood, J. Horner, T. Hinse and S. Marsden, which has recently been published in The Astronomical Journal. It deals with the dynamical stability of the asteroid Chariklo as a Centaur, i.e. when Chariklo became a Centaur, and for how long.


Chariklo is a large asteroid orbiting between the orbits of Saturn and Uranus, i.e. it is a Centaur. It is the largest known of them, with a diameter of ~250 km. It orbits the Sun on an elliptic orbit, with an eccentricity of 0.18, inducing variations of its distance to the Sun between 13.08 (perihelion) and 18.06 au (aphelion), au being the astronomical unit, close to 150 millions km.
But the main reason why people are interested in Chariklo is the confirmed presence of rings around it, while the scientific community expected rings only around large planets. These rings were discovered during a stellar occultation, i.e. Chariklo occulting a distant star. From the multiple observations of this occultation in different locations of the Earth’s surface, 2 rings were detected, and announced in 2014. Since then, rings have been hinted around Chiron, which is the second largest one Centaur, but this detection is still doubtful.
Anyway, Chariklo contributes to the popularity of the Centaurs, and this study is focused on it.

Small bodies populations in the Solar System

The best known location of asteroids in the Solar System is the Main Belt, which is located between the orbits of Mars and Jupiter. Actually, there are small bodies almost everywhere in the Solar System, some of them almost intersecting the orbit of the Earth. Among the other populations are:

  • the Trojan asteroids, which share the orbit of Jupiter,
  • the Centaurs, which orbit between Saturn and Uranus,
  • the Trans-Neptunian Objects (TNOs), which orbit beyond the orbit of Neptune. They can be split into the Kuiper Belt Objects (KBOs), which have pretty regular orbits, some of them being stabilized by a resonant interaction with Neptune, and the Scattered Disc Objects (SDOs), which have larger semimajor axes and high eccentricities
  • the Oort cloud, which was theoretically predicted as a cloud of objects orbiting near the cosmological boundary of our Solar System. It may be a reservoir of comets, these small bodies with an eccentricity close to 1, which can sometimes visit our Earth.

The Centaurs are interesting from a dynamical point of view, since their orbits are not that stable, i.e. it is estimated that they remain in the Centaur zone in about 10 Myr. Since this is very small compared to the age of our Solar System (some 4.5 Gyr), the fact that Centaurs are present mean that the remaining objects are not primordial, and that there is at least one mechanism feeding this Centaur zone. In other words, the Centaurs we observe were somewhere else before, and they will one day leave this zone, but some other guys will replace them.

There are tools, indicators, helpful for studying and quantifying this (in)stability.

Stability, Lyapunov time, and MEGNO

Usually, an orbiting object is considered as “stable” (actually, we should say that its orbit is stable) if it orbits around its parent body for ever. Reasons for instability could be close encounters with other orbiting objects, these close encounters being likely to be favored by a high eccentricity, which could itself result from gravitational interactions with perturbing objects.
To study the stability, it is common to study chaos instead. And to study chaos, it is common to actually study the dependency on initial conditions, i.e. the hyperbolicity. If you hold a broom vertically on your finger, it lies in a hyperbolic equilibrium, i.e. a small deviation will dramatically change the way it will fall… but trust me, it will fall anyway.
And a good indicator of the hyperbolicity is the Lyapunov time, which is a timescale beyond which the trajectory is so much sensitive on the initial conditions that you cannot accurately predict it anymore. It will not necessarily become unstable: in some cases, known as stable chaos, you will have your orbit confined in a given zone, you do not know where it is in this zone. The Centaur zone has some kind of stable chaos (over a given timescale), which partly explains why some bodies are present there anyway.
To estimate the Lyapunov time, you have to integrate the differential equations ruling the motion of the body, and the ones ruling its tangent vector, i.e. tangent to its trajectory, which will give you the sensitivity to the initial conditions. If you are hyperbolic, then the norm of this tangent vector will grow exponentially, and from its growth rate you will have the Lyapunov time. Easy, isn’t it? Not that much. Actually this exponential growth is an asymptotic behavior, i.e. when time goes to infinity… i.e. when it is large enough. And you have to integrate over a verrrrry loooooooong time…
Fortunately, the MEGNO (Mean Exponential Growth of Nearby Orbits) indicator was invented, which converges much faster, and from which you can determine the Lyapunov time. If you are hyperbolic, the Lyapunov time is contained in the growth rate of the MEGNO, and if not, the MEGNO tends to 2, except for pretty simple systems (like the rotation of synchronous bodies), where it tends to zero.

We have now indicators, which permit to quantify the instability of the orbits. As I said, these instabilities are usually physically due to close encounters with large bodies, especially Uranus for Centaurs. This requires to define the Hill and the Roche limits.

Hill and Roche limits

First the Roche limit: where an extended body orbits too close to a massive object, the difference of attraction it feels between its different parts is stronger than its cohesion forces, and it explodes. As a consequence, satellites of giant planets survive only as rings below the Roche limit. And the outer boundary of Saturn’s rings is inner and very close to the Roche limit.

Now the Hill limit: it is the limit beyond which you feel more the attraction of the body you meet than the parent star you both orbit. This may result in being trapped around the large object (a giant planet), or more probably a strong deviation of your orbit. You could then become hyperbolic, and be ejected from the Solar System.

This paper

This study consists in backward numerical integrations of clones of Chariklo, i.e. you start with many fictitious particles (the authors had 35,937 of them) which do not interact with each others, but interact with the giant planets, and which are currently very close to the real Chariklo. Numerical integration over such a long timespan requires accurate numerical integrators, the authors used a symplectic one, i.e. which presents mathematical properties limiting the risk of divergence over long times. Why 1 Gyr? The mean timescale of survival (called here half-life, i.e. during which you lose half of your population) is estimated to be 10 Myr, so 1 Gyr is 100 half-lives. They simulated the orbits and also drew MEGNO maps, i.e. estimated the Lyapunov time with respect to the initial orbital elements of the particle. Not surprisingly, the lower the eccentricity, the more stable the orbit.

And the result is: Chariklo is in a zone of pretty stable chaos. Moreover, it is probably a Centaur since less than 20 Myr, and was a Trans-Neptunian Object before. This means that it was exterior to Neptune, while it is now interior. In a few simulations, Chariklo finds its origin in the inner Solar System, i.e. the Main Belt, which could have favored a cometary activity (when you are closer to the Sun, you are warmer, and your ice may sublimate), which could explain the origin of the rings. But the authors do not seem to privilege this scenario, as it supported by only few simulations.

What about the rings?

The authors wondered if the rings would have survived a planetary encounter, which could be a way to date them in case of no. But actually it is a yes: they found that the distance of close encounter was large enough with respect to the Hill and Roche limits to not affect the rings. So, this does not preclude an ancient origin for the rings… But a specific study of the dynamics of the rings would be required to address this issue, i.e. how stable are they around Chariklo?

To know more

And that’s it for today! Please do not forget to comment. You can also subscribe to the RSS feed, and follow me on Twitter and Facebook.

A quest for sources of meteor showers

Hi there! Today I will present you a study entitled Dynamical modeling validation of parent bodies associated with newly discovered CMN meteor showers, by D. Šegon, J. Vaubaillon, P. Gural, D. Vida, Ž. Andreić, K. Korlević & I. Skokić, which has recently been accepted for publication in Astronomy and Astrophysics. It addresses the following question: when you see meteors, where do they come from?

The meteor showers

Imagine you have a comet, i.e. a small body, which wanders in the Solar System with a large eccentricity. This means that it orbits around the Sun, but with large variations of its distance with the Sun. The consequence is that it experiences large variations of temperature during its journey. In particular, when it reaches the perihelion, i.e. when its distance to the Sun is the smallest, the temperature is so hot that it outgasses. The result is the ejection of a cloud of small particles, which itself wanders in the Solar System, on its own orbit.

When the Earth meets it, then these particles are burnt in our atmosphere. This results in meteor showers. Such showers can be sporadic, or happen every year if the cloud is pretty static with respect to the orbit of the Earth. The body from which the particles originate is called the parent body. The study I present you today aims at identifying the parent body of some of these meteor showers.

How to observe them

Understanding the meteor showers is an issue for the safety of the Earth environment, particularly our artificial satellites. Some meteors can even impact the surface of the Earth. This is why numerous observation programs exist, and for that amateurs are very helpful!

The first way to observe meteor showers is visually. When you know that meteor showers are likely to happen, you look at the sky and take note of the meteors you see: when you saw it, from where, where it came from, its magnitude (~its brightness), etc. The point from where the meteor seems to come is called the radiant. It is written as a set of two angles α and δ, i.e. right ascension and declination, which localize it on the celestial sphere.

For unpredicted showers, we can use cameras, which continually observe and record the sky. Then, algorithms of image processing can detect the meteor. Meteors can also be detected in the radio wavelengths.

Dynamical modeling

If you want to simulate the orbit of a particle, you have to consider:

  • the location of the parent body when the particle was ejected (initial position),
  • the ejection velocity,
  • the ejection time, likely when the parent body was close to its perihelion. The question how close? cannot be accurately answered,
  • the gravitational action of the Sun and the planets of the Solar System,
  • the non-gravitational forces, which might have a strong effect on such small bodies.

These non-gravitational forces, here the Poynting-Robertson drag, are due to the Solar radiation, which causes a loss of angular momentum of the particle during its orbital journey around the Sun. It is significant for particles smaller than the centimeter, which is often the case for such ejecta.

You cannot simulate the orbit of a specific particle that you would have identified before, just because they are too small to be observed as individuals. However, you can simulate a cloud, composed of a synthetic population of fictitious particles, with various sizes, ejection times, initial velocities… in such a way that your resulting cloud will have global properties which are close to the real cloud of ejecta. Then you can simulate the evolution of the cloud with time, and in particular determine the time, duration, direction, and intensity of a meteor shower.

Simulating such a cloud reveals interesting dynamical features. It presents an initial size, because of the variations in the ejection times of the particles. But it also widens with time, since the particles present different ejection velocities. This usually (but not always!) results in a kind of a tire which enshrouds the whole orbit of the parent body. Unfortunately, it can be observed only when the Earth crosses it. So, simulating the behavior of the cloud will tell you when the Earth crosses it, how long the crossing lasts, and the density of the cloud during the crossing.
It should be kept in mind that a cloud is composed of a hyue number of particles. For this reason, dedicated computation means are required.

This study

This study aims at identifying the parent body of meteor showers, which were detected by the Croatian Meteor Network (CMN in the title). For that, the first step is to make sure that a shower is a shower.
The detected meteors should resemble enough, which can be measured with the D-criteria, that are a measurement of a distance, in a given space, between the orbits of two objects. Once a meteor shower is identified, the same D-criteria can be used to try to identify the parent body, from its orbit. The parent bodies are comets or asteroids, they are usually known enough for candidates to be determined. And once candidates are identified, then their outgassing is simulated, to predict the meteor showers associated. If a calculated meteor shower is close enough to an observed one, then it is considered that the parent body has been successfully identified. This last close enough is related to the time and duration of the showers, and the location of the radiants.

The authors analyzed 13 meteor showers, and successfully identified the parent body for 7 of them. Here is their list, the showers are identified under their IAU denominations:

  • #549FAN – 49 Andromedids comes from the comet 2001 W2 Batters,
  • #533 JXA – July ξ Arietids comes from the comet 1964 N1 Ikeya,
  • #539 ACP – α Cepheids comes from the comet 255P Levy,
  • #541 SSD – 66 Draconids comes from the asteroid 2001 XQ,
  • #751 KCE – κ Cepheids comes from the asteroid 2009 SG18,
  • #753 NED – November Draconids comes from the asteroid 2009 WN25,
  • #754 POD – ψ Draconids comes from the asteroid 2008 GV.

For this last stream, the authors acknowledge that another candidate parent body has not been investigated: the asteroid 2015 FA118.

For the 6 other cases, either the identification of a parent body is speculated but not assessed enough, or just no candidate has been hinted, possibly because it is an asteroid or a comet which has not discovered yet, and / or because data are missing on the meteor shower.

Some links

That’s it for today! As usual, I accept any comment, feel free to post!