Tag Archives: celestial mechanics

Dust coorbital to Jupiter

Hi there! You may have heard of the coorbital satellites of Jupiter, or the Trojans, which share its orbit. Actually they are 60° ahead or behind it, which are equilibrium positions. Today we will see that dust is not that attached to these equilibrium. This is the opportunity to present you a study divided into two papers, Dust arcs in the region of Jupiter’s Trojan asteroids and Comparison of the orbital properties of Jupiter Trojan asteroids and Trojan dust, by Xiaodong Liu and Jürgen Schmidt. These two papers have recently been accepted for publication in Astronomy and Astrophysics.

The Trojan asteroids

Jupiter is the largest of the planets of the Solar System, it orbits the Sun in 11.86 years. On pretty the same orbit, asteroids precede and follow Jupiter, with a longitude difference of 60°. These are stable equilibrium, in which Jupiter and every asteroid are locked in a 1:1 mean-motion resonance. This means that they have the same orbital period. These two points, which are ahead and behind Jupiter on its orbit, are the Lagrange points L4 and L5. Why 4 and 5? Because three other equilibrium exist, of course. These other Lagrange points, i.e. L1, L2, and L3, are aligned with the Sun and Jupiter, and are unstable equilibrium. It is anyway possible to have orbits around them, and this is sometimes used in astrodynamics for positioning artificial satellites of the Earth, but this is beyond the scope of our study.

Location of the Lagrange points.
Location of the Lagrange points.

At present, 7,206 Trojan asteroids are list by the JPL Small Body Database, about two thirds orbiting in the L4 region. Surprisingly, no coorbital asteroid is known for Saturn, a few for Uranus, 18 for Neptune, and 8 for Mars. Some of these bodies are on unstable orbits.

Understanding the formation of these bodies is challenging, in particular explaining why Saturn has no coorbital asteroid. However, once an asteroid orbits at such a place, its motion is pretty well understood. But what about dust? This is what the authors investigated.

Production of dust

When a planetary body is hit, it produces ejecta, which size and dynamics depend on the impact, the target, and the impactor. The Solar System is the place for an intense micrometeorite bombardment, from which our atmosphere protects us. Anyway, all of the planetary bodies are impacted by micrometeorites, and the resulting ejecta are micrometeorites themselves. Their typical sizes are between 2 and 50 micrometers, this is why we can call them dust. More specifically, it is zodiacal dust, and we can sometimes see it from the Earth, as it reflects light. We call this light zodiacal light, and it can be confused with light pollution.

It is difficult to estimate the production of dust. The intensity of the micrometeorite bombardment can be estimated by spacecraft. For instance, the spacecraft Cassini around Saturn had on-board the instrument CDA, for Cosmic Dust Analyzer. This instrument not only measured the intensity of this bombardment around Saturn, but also the chemical composition of the micrometeorites.

Imagine you have the intensity of the bombardment (and we don’t have it in the L4 and L5 zones of Jupiter). This does not mean that you have the quantity of ejecta. This depends on a yield parameter, which has been studied in labs, and remains barely constrained. It should depend on the properties of the material and the impact velocity.

The small size of these particles make them sensitive to forces, which do not significantly affect the planetary bodies.

Non-gravitational forces affect the dust

Classical planetary bodies are affected (almost) only by gravitation. Their motion is due to the gravitational action of the Sun, this is why they orbit around it. On top of that, they are perturbed by the planets of the Solar System. The stability of the Lagrange points results of a balance between the gravitational actions of the Sun and of Jupiter.

This is not enough for dusty particles. They are also affected by

  • the Solar radiation pressure,
  • the Poynting-Robertson drag,
  • the Solar wind drag,
  • the magnetic Lorentz force.

The Solar radiation pressure is an exchange of momentum between our particle and the electromagnetic field of the Sun. It depends on the surface over mass ratio of the particle. The Poynting-Robertson drag is a loss of angular momentum due to the tangential radiation pressure. The Solar wind is a stream of charged particles released from the Sun’s corona, and the Lorentz force is the response to the interplanetary magnetic field.

You can see that some of these effects result in a loss of angular momentum, which means that the orbit of the particle would tend to spiral. Tend to does not mean that it will, maybe the gravitational action of Jupiter, in particular at the coorbital resonance, would compensate this effect… You need to simulate the motion of the particles to know the answer.

Numerical simulations

And this is what the authors did. They launched bunches of numerical simulations of dusty particles, initially located in the L4 region. They simulated the motion of 1,000 particles, which sizes ranged from 0.5 to 32 μm, over more than 15 kyr. And at the end of the simulations, they represented the statistics of the resulting orbital elements.

Some stay, some don’t…

This way, the authors have showed that, for each size of particles, the resulting distribution is bimodal. In other words: the initial cloud has a maximum of members close to the exact semimajor axis of Jupiter. And at the end of the simulation, the distribution has two peaks: one centered on the semimajor axis of Jupiter, and another one slightly smaller, which is a consequence of the non-gravitational forces. This shift depends on the size of the particles. As a consequence, you see this bimodal distribution for every cloud of particles of the same size, but it is visually replaced by a flat if you consider the final distribution of the whole cloud. Just because the location of the second peak depends on the size of the particles.

Moreover, dusty particles have a pericenter which is slightly closer to the one of Jupiter than the asteroids, this effect being once more sensitive to the size of the particles. However, the inclinations are barely affected by the size of the particles.

In addition to those particles, which remain in the coorbital resonance, some escape. Some eventually fall on Jupiter, some are trapped in higher-order resonances, and some even become coorbital to Saturn!

As a conclusion we could say that the cloud of Trojan asteroids is different from the cloud of Trojan dust.

All this results from numerical simulations. It would be interesting to compare with observations…

Lucy is coming

But there are no observations of dust at the Lagrange points… yet. NASA will launch the spacecraft Lucy in October 2021, which will explore Trojan asteroids at the L4 and L5 points. It will also help us to constrain the micrometeorite bombardment in these regions.

The study and its authors

You can find below the two studies:

And that’s it for today! Please do not forget to comment. You can also subscribe to the RSS feed, and follow me on Twitter, Facebook, Instagram, and Pinterest.

Some comets are not randomly distributed

Hi there! Everybody knows the comets, which may show us impressive tails, when they approach our Sun. This is due to what we call cometary activity. You can find comets in many places in the Solar System. Today we will focus on the 9 ones, which are located in the Main Asteroid Belt, i.e. between the orbits of Mars and Jupiter. This is the opportunity to present you Orbital alignment of Main-belt comets, by Yoonyoung Kim, Yougmin JeongAhn, and Henry H. Hsieh. This study has recently been published in The Astronomical Journal.

Comets in the Solar System

A comet is a small body, which presents some activity. This activity manifests as 2 tails, which are a gas tail and a dust tail. These two tails have different directions because the dust is heavier than the gas, and so is differently affected by the Sun. The Sun is actually responsible for at least part of this activity: if the body has water ice at its surface, the proximity of the Sun heats it enough to sublimate it.

We distinguish different classes of comets, from their orbital motion. The short-period comets have a period below 200 years, i.e. they make a close approach to the Sun periodically, with less than 200 years between two approaches. This is for instance the case of the famous Halley comet, or 1P/Halley, which period is 75 years. The comets with a period smaller than 20 years are called Jupiter-family comets, their orbits are strongly affected by the gravitational perturbation of Jupiter.
And we also have long-period comets, with periods larger than 200 years, up to several thousands of years, or even more… The extreme case is the one of the parabolic and hyperbolic comets, which eccentricities are close to or larger than 1. In such a case, we just see the comet once.

The Jupiter-family comets should originate from the Kuiper Belt, and have been so strongly perturbed by Jupiter that their semimajor axes became much smaller, reducing their orbital periods. However, we attribute the origin of the longer periods comets to the Oort cloud, which is thought to lie between 50,000 and 200,000 astronomical units (remember: the Sun-Earth distance is 1 AU). The comets we are interested in today are much closer, in the Main-Belt of asteroids.

The Main-Belt Comets

Main Belt Comets (MBCs) are comets, which are located in the asteroid belt. As such, they present some cometary activity. It appears that there is no general agreement on the way to identify them. Some asteroids present an activity, which is mainly driven by dust, and not by sublimation of water ice, so it could be relevant to call them active asteroids instead of comets. But they may have some sublimation driven activity as well.

The first identified MBC is 133P/Elst-Pizarro, which has been discovered in 1979 and is since then identified as an asteroid… and also as a comet since 1996. I mean, this is officially both a comet and an asteroid. The authors considered 9 MBC, there could be a little more of them, since classifying them is not that easy.

The comet Elst-Pizarro seen at La Silla Observatory. © ESO
The comet Elst-Pizarro seen at La Silla Observatory. © ESO

The MBC should originate from the Main-Belt. In this study, we are interested in the orbital dynamics. Let us talk about orbital elements.

Proper, forced, and osculating elements

As I have already told you in a previous post, we usually describe the orbit of a planetary body with 6 orbital elements, which characterize the ellipse drawn by the trajectory.

These orbital elements are

  • the semi-major axes (which would be the distance to the Sun, if the orbit were circular… this remains almost true for slightly eccentric orbits),
  • the mean longitude,
  • the eccentricity of the trajectory (0 means circular, the eccentricity must be smaller than 1 for the orbit to be elliptic),
  • the pericentre, i.e. location of the point of the trajectory, where the distance to the Sun is minimal,
  • the inclination, with respect to a given reference plane,
  • the ascending node, which locates the intersection between the reference plane and the orbit.

We call them osculating elements. These are the elements that the orbit would have at a given time, if it were exactly an ellipse. The real trajectory is very close to an ellipse, actually.

We will just keep in mind the two couples (eccentricity, pericentre), and (inclination, ascending node). Because these variables are coupled: without eccentricity, the pericentre is irrelevant, since the distance Sun-body is constant. And without inclination, the ascending node is irrelevant, since the whole trajectory is in the reference plane.

And these variables are the sums of a proper and a forced component. Imagine you are a MBC. You want to have your own motion around the Sun. This gives you the proper (or free) component, which is actually ruled by your initial conditions, and the interaction with the Sun (what we call the 2-body, or Kepler, problem). Unfortunately for you, there is this big guy perturbing your motion (Jupiter is his name). He is heavy enough to force your motion to follow his. This gives you a forced motion, and the actual motion is the sum of the proper and the forced ones. The forced motion tends to align your pericentre and your ascending node with the ones of Jupiter. The authors studied these motions.

The Main-Belt Comets are clustered

And their conclusions is that the MBC are clustered, in particular the pericentres. They tend to be aligned with the one of Jupiter. This could have been anticipated, but the authors found something more: the MBC are more clustered than the others asteroids, which lie in that region of the outer main-belt.

For quantifying this more clustered, they ran several statistical tests, which I do not want to detail (the Kolmogorov-Smirnov test, the F-test, and the Watson’s U2 test). These tests show that this excess of clustering happened very unlikely by chance. In other words, there is something. And this is more obvious for comets, for which the sublimation activity is overwhelming. This permits the authors to make a link between this activity, i.e. the presence of water ice, and this clustering. And to suggest favorable conditions for the detection of cometary activity for Main-Belt objects.

Where are the other MBCs?

Based on the result that the eccentricities of MBCs are secularly excited by Jupiter, the authors suggest to look for them in the fall night sky, when Jupiter’s perihelion is at opposition.
We would not necessarily be looking for new bodies, but also for cometary activity of already known bodies. Because of the variations of the distance with the Sun, the sublimation of water ice is not a permanent phenomenon. Remember that Elst-Pizarro has been classified as a comet 17 years after its discovery.

Clustering of TNOs suggests the existence of the Planet Nine

I would like to finish with a reminder that the Planet Nine was hinted that way, in 2016. A clustering among the orbits of Trans-Neptunian Objects was statistically proven. Since then, the Planet Nine has not been detected (yet), but other clues have suggested its presence, like the obliquity of the Sun.

More generally, I would say that big objects strongly affect the orbits of small ones, and in observing the small ones, then you can deduce something on the big ones!

The study and its authors

And that’s it for today! Please do not forget to comment. You can also subscribe to the RSS feed, and follow me on Twitter, Facebook, Instagram, and Pinterest.

New chaos indicators

Hi there! Today it is a little bit different. I will not tell you about something that has been observed but rather of a more general concept, which is the chaos in the Solar System. This is the opportunity to present you Second-order chaos indicators MEGNO2 and OMEGNO2: Theory, by Vladimir A. Shefer. This study has been originally published in Russian, but you can find an English translation in the Russian Physics Journal.

To present you this theoretical study, I need to define some useful notions related to chaos. First is the sensitivity to the initial conditions.

Sensitivity to the initial conditions

Imagine you are a planetary body. I put you somewhere in the Solar System. This somewhere is your initial condition, actually composed of 6 elements: 3 for the position, and 3 for the velocity. So, I put you there, and you evolve, under the gravitational interaction of the other guys, basically the Sun and the planets of the Solar System. You then have a trajectory, which should be an orbit around the Sun, with some disturbances of the planets. What would have happened if your initial condition would have been slightly different? Well, you expect your trajectory to have been slightly different, i.e. pretty close.

Does it always happen this way? Actually, not always. Sometimes yes, but sometimes… imagine you have a close encounter with a planet (hopefully not the Earth). During the encounter, you are very sensitive to the gravitational perturbation of that planet. And if you arrive a little closer, or a little further, then that may change your trajectory a lot, since the perturbation depends on the distance to the planet. In such a case, you are very sensitive to the initial conditions.

What does that mean? It actually means that if you are not accurate enough on the initial condition, then your predicted trajectory will lack of accuracy. And beyond a certain point, predicting will just be pointless. This point can be somehow quantified with the Lyapunov time, see a little later.

An example of body likely to have close encounters with the Earth is the asteroid (99942) Apophis, which was discovered in 2004, and has sometimes close encounters with the Earth. There was one in 2013, there will be another one in 2029, and then in 2036. But risks of impact are ruled out, don’t worry. 🙂

Let us talk now about the problem of stability.

Stability

A stable orbit is an orbit which stays around the central body. A famous and recent example of unstable orbit is 1I/’Oumuamua, you know, our interstellar visitor. It comes from another planetary system, and passes by, on a hyperbolic orbit. No chaos in that case.

But sometimes, an initially stable orbit may become unstable because of an accumulation of gravitational interactions, which raise its eccentricity, which then exceeds 1. And this is where you may connect instability with sensitivity to initial conditions, and chaos. But this is not the same. And you can even be stable while chaotic.

Now, let us define a related (but different) notion, which is the diffusion of the fundamental frequencies.

Diffusion of the Fundamental Frequencies

Imagine you are on a stable, classical orbit, i.e. an ellipse. The Sun lies at one of its foci, and you have an orbital frequency, a precessional frequency of your pericenter, and a frequency related to the motion of your ascending node. All of these points have a motion around the Sun, with constant velocities. So, the orbit can be described with 3 fundamental frequencies. If your orbit is perturbed by other bodies, which have their own fundamental frequencies, then you will find them as additional frequencies in your trajectory. Very well. If the trajectories remain constant, then it can be topologically said that your trajectories lies on tori.

Things become more complicated when you have a drift of these fundamental frequencies. It is very often related to chaos, and sometimes considered as an indicator of it. In such a case, the tori are said to be destroyed. And we have theorems, which address the survival of these tori.

The KAM and the Nekhoroshev theorems

The most two famous of them are the KAM and the Nekhoroshev theorems.

KAM stands for Kolmogorov-Arnold-Moser, which were 3 famous mathematicians, specialists of dynamical systems. These problems are indeed not specific to astronomy or planetology, but to any physical system, in which we neglect the dissipation.

The KAM theorem says that, for a slightly perturbed integrable system (allow me not to develop this point… just keep in mind that the 2-body problem is integrable), some tori survive, which means that you can have regular (non chaotic) orbits anyway. But some of them may be not. This theorem needs several assumptions, which may be difficult to fulfill when you have too many bodies.

The Nekhoroshev theory addresses the effective stability of destroyed tori. If the perturbation is small enough, then the trajectories, even not exactly on tori, will remain close enough to them over an exponentially long time, i.e. longer than the age of the Solar System. So, you may be chaotic, unstable… but remain anyway where you are.

Chaos is related to all of these notions, actually there are several definitions of chaos in the literature. Consider it as a mixture of all the elements I gave you. In particular the sensitivity to the initial conditions.

Chaos in the Solar System

Chaos has been observed in the Solar System. The first observation is the tumbling rotation of the satellite of Saturn Hyperion (see featured image). So, not an orbital case. Chaos has also been characterized in the motion of asteroids, for instance the Main-Belt asteroid (522) Helga has been proven to be in stable chaos in 1992 (see here). It is in fact swinging between two mean-motion resonances with Jupiter (Chirikov criterion), which confine its motion, but make it difficult to predict anyway. The associated Lyapunov time is 6.9 kyr.

There are also chaotic features in the rings of Saturn, which are due to the accumulation of resonances with satellites so close to the planet. These effects are even raised by the non-linear self-dynamics of the rings, in which the particles interact and collide. And the inner planets of the Solar System are chaotic over some 10s of Myr, this has been proven by long-term numerical integrations of their orbits.

To quantify this chaos, you need the Lyapunov time.

The maximal Lyapunov exponent

The Lyapunov time is the invert of the Lyapunov exponent. To estimate the Lyapunov exponent, you numerically integrate the trajectory, and its tangent vector. When the orbit is chaotic, the norm of this vector will grow exponentially, and the Lyapunov exponent is the asymptotic limit of the divergence rate of this exponential growth. It is strictly positive in case of chaos. Easy, isn’t it?

Not that easy, actually. The exponential growth makes that this norm might be too large and generate numerical errors, but this can be fixed in regularly, i.e. at equally spaced time intervals, renormalizing the tangent vector. Another problem is in the asymptotic limit: you may have to integrate over a verrrrrry long time to reach it. To bypass this problem of convergence, other indicators have been invented.

To go faster: FLI and MEGNO

FLI stands for Fast Lyapunov Indicators. There are several variants, the most basic one consists in stopping the integration at a given time. So, you give up the asymptotic limit, and you give up the Lyapunov time, but you can efficiently distinguish the regular orbits from the chaotic ones. This is a good point.

Another chaos detector is the MEGNO, for Mean Exponential Growth of Nearby Orbits. This consists to integrate the norm of the time derivative of the tangent vector divided by the norm of the tangent vector. The result tends to a straight line, which slope is half the maximal Lyapunov exponent. And this tool converges very fast. The author of the study I present you wishes to improve that tool.

This study presents MEGNO2

And for that, he presents us MEGNO2. This works like MEGNO, but with an osculating vector instead of a tangent one. Tangent means that this vector fits to a line tangent to the trajectory, while osculating means that it fits to its curvature as well, i.e. second order derivative. In other words, it is more accurate.

From this, the author shows that, like MEGNO, MEGNO2 tends to a straight line, but with a larger slope. As a consequence, he argues that it permits a more efficient detection of the chaotic orbits with respect to the regular ones. However, he does not address the link between this new slope and the Lyapunov time.

Something that my writing does not render, is that this paper is full of equations. Fair enough, for what I could call mathematical planetology.

The study and its author

As it often happens for purely theoretical studies, this one has only one author.

And that’s it for today! Please do not forget to comment. You can also subscribe to the RSS feed, and follow me on Twitter, Facebook, Instagram, and Pinterest.

2010 JO179: a new, resonant dwarf planet

Hi there! Today I present you the discovery of a Trans-Neptunian Object, you know, these objects which orbit beyond the orbit of Neptune. And I particularly like that one, since its orbit resonates with the one of Neptune. Don’t worry, I will explain you all this, keep in mind for now that this object is probably one of the most stable. Anyway, this is the opportunity to present you A dwarf planet class object in the 21: 5 resonance with Neptune by M.J. Holman and collaborators. This study has recently been accepted for publication in The Astrophysical Journal Letters.

The Trans-Neptunian Objects

The Trans-Neptunians Objects are small bodies, which orbit beyond the orbit of Neptune, i.e. with a semimajor axis larger than 30 AU. The first discovered one is the well-known Pluto, in 1930. It was then, and until 2006, considered as the ninth planet of the Solar System. It was the only known TNO until 1992. While I am writing this, 2482 are listed on the JPL small-body database search engine.

The TNOs are often classified as the Kuiper-Belt objects, the scattered disc objects, and the Oort cloud. I do not feel these are official classifications, and there are sometimes inconsistencies between the different sources. Basically, the Kuiper-Belt objects are the ones, which orbits are not too much eccentric, not too inclined, and not too far (even if these objects orbit very far from us). The scattered disc objects have more eccentric and inclined orbits, and these dynamics could be due to chaotic / resonant excitation by the gravitational action of the planets. And the Oort cloud could be seen as the frontier of our Solar System. It is a theoretical cloud located between 50,000 and 200,000 Astronomical Units. Comets may originate from there. Its location makes it sensitive to the action of other stars, and to the Galactic tide, i.e. the deformation of our Galaxy.

The object I present you today, 2010 JO179, could be a scattered disc object. It has been discovered in 2010, thanks to the Pan-STARRS survey.

The Pan-STARRS survey

Pan-STARRS, for Panoramic Survey Telescope and Rapid Response System, is a systematic survey of the sky. Its facilities are located at Haleakala Observatory, Hawaii, and currently consist of two 1.8m-Ritchey–Chrétien telescopes. It operates since 2010, and discovered small Solar System objects, the interstellar visitor 1I/’Oumuamua… It observes in 5 wavelengths from infrared to visible.

The Pan-STARRS1 telescope. © Pan-STARRS
The Pan-STARRS1 telescope. © Pan-STARRS

The data consist of high-accuracy images of the sky, containing a huge amount of data. Beyond discoveries, these data permit an accurate astrometry of the object present on the images, which is useful for understanding their motion and determining their orbits. They also allow a determination of the activity of variable objects, i.e. variable stars, a study of their surface from their spectrum in the five wavelengths, and (for instance) the measurement of their rotation. A very nice tool anyway!

Pan-STARRS delivered its first data release in December 2016, while the DR2 (Data Release 2) is scheduled for mid-2018… pretty soon actually.

Among the discovered objects are the one we are interested in today, i.e. 2010 JO179.

Identifying the new object

The first observation of 2010 JO179 dates back from May 2010, and it has been detected 24 times during 12 nights, until July 2016. The detections are made in comparing the Pan-STARRS data from the known objects. Once something unknown appears in the data, leaving what the authors call a tracklet, its motion is extrapolated to predict its position at different dates, to investigate whether it is present on other images, another time. From 3 detections, the algorithm makes a more systematic search of additional tracklets, and in case of positive additional detection, then an orbit is fitted. The orbital characteristics (and other properties) are listed below.

Semimajor axis 78.307±0.009 AU
Eccentricity 0.49781±0.00005
Inclination 32.04342±0.00001 °
Orbital period 6663.757±0.002 yr
Diameter 600-900 km
Absolute magnitude 3.4±0.1

You can notice the high accuracy of the orbital parameters, which almost looks like a miracle for such a distant object. This is due to the number of detections, and the accuracy of the astrometry with Pan-STARRS. Once an object is discovered, you know where it is, or at least where it is supposed to be. Thanks to this knowledge, it was possible to detect 2010 JO179 on data from the Sloan Digital Sky Survey, taken in New Mexico, and on data from the DECalS survey, taken in Chile. Moreover, 2010 JO179 was intentionally observed with the New Technology Telescope (NTT) in La Silla, Chile.

The spectroscopy (analysis of the reflected light at different wavelengths) of 2010 JO179 revealed a moderately red object, which is common for TNOs.

Measuring its rotation

This is something I have already evoked in previous articles. When you record the light flux reflected by the surface of a planetary body, you should observe some periodic variability, which is linked to its rotation. From the observations, you should extract (or try to) a period, which may not be an easy task regarding the sparsity and the accuracy of the observations.

In using the so-called Lomb-Scargle algorithm, the authors detected two possible periods, which are 30.6324 hours, and 61.2649 hours… i.e. twice the former number. These are best-fits, i.e. you try to fit a sinusoid to the recorded light, and these are the periods you get. The associated amplitudes are variations of magnitude of 0.46 and 0.5, respectively. In other words, the authors have two solutions, they favor the first one since it would imply a too elongated asteroid. Anyway, you can say that twice 30.6324 hours is a period as well, but what we call the spin period is the smallest non-null duration, which leaves the light flux (pretty) invariant. So, the measured spin period of 2010 JO179 is 30.6324 hours, which makes it a slow rotator.

Mean-motion resonances

Let us make a break on the specific case of 2010 JO179 (shall we give it a nickname anyway?), since I would like to recall you something on the mean-motion resonances before.

When two planetary bodies orbit the Sun, they perturb each other. It can be shown that when the ratio of their orbital periods (similarly the ratio of their orbital frequencies) is rational, i.e. is one integer divided by another one, then you are in a dynamical situation of commensurability, or quasi-resonance. A well known case is the 5:2 configuration between Jupiter and Saturn, i.e. Jupiter makes 5 orbits around the Sun while Saturn makes 2. In such a case, the orbital perturbations are enhanced, and you can either be very stable, or have a chaotic orbit, in which the eccentricities and inclinations could raise, the orbit become unpredictable beyond a certain time horizon (Lyapunov time), and even a body be ejected.

Mathematically, an expansion of the so-called perturbing function, or the perturbing mutual gravitational potential, would display a sum of sinusoidal term containing resonant arguments, which would have long-term effects. These arguments would read as pλ1-(p+q)λ2+q1ϖ1+q2ϖ2+q3Ω1+q4Ω2, with q=q1+q2+q3+q4. The subscripts 1 and 2 are for the two bodies (in our case, 1 will stand for Neptune, and 2 for JO 2010179), λ are their mean longitudes, ϖ their longitudes of pericentres, and Ω the longitudes of their ascending nodes.

In a perturbed case, which may happen for high eccentricities and inclinations, resonances involving several arguments may overlap, and induce a chaotic dynamics that could be stable… or not. You need to simulate the long-term dynamics to know more about that.

A resonant long-term dynamics

It appears that Neptune and 2010 JO179 are very close to the 21:5 mean-motion resonance (p=5, q=16). To inquire this, the authors ran 100 numerical simulations of the orbital motion of 2010 JO179, with slightly different initial conditions which are consistent with the uncertainty of the observations, over 700 Myr. And they saw that 2010 JO179 could be trapped in a resonance, with argument 5λ1-21λ2+16ϖ2. In about 25% of the simulations, JO179 remains trapped, which implies that the resonant argument is librating, i.e. bounded, all over the simulation. As a consequence, this suggests that its orbit is very stable, which is remarkable given its very high eccentricity (almost 0.5).

The study and its authors

And that’s it for today! Please do not forget to comment. You can also subscribe to the RSS feed, and follow me on Twitter, Facebook, Instagram, and Pinterest.

A constantly renewed ring of Saturn

Hi there! The outstanding Cassini mission ended last September with its Grand Finale, and it gave us invaluable data, which will still be studied for many years. Today I present you a study which has recently been published in The Astrophysical Journal: Particles co-orbital to Janus and Epimetheus: A firefly planetary ring, by a Brazilian team composed of Othon C. Winter, Alexandre P.S. Souza, Rafael Sfair, Silvia M. Giuliatti Winter, Daniela C. Mourão, and Dietmar W. Foryta. This study tells us how the authors characterized a dusty ring in the system of Saturn, studied its stability, and investigated its origin.

The rings of Saturn

As you may know, Saturn is the ringed planet, its rings being visible from Earth-based amateur telescopes. Actually, the 4 major planets of our Solar System have rings, and some dwarf planets as well, i.e. Chariklo, Haumea, and possibly Chiron. But Saturn is the only one with so dense rings. I summarize below the main relevant structures and distances, from the center of Saturn:

Distance Structure
60,268 km The atmospheric pressure of Saturn reaches 1 bar.
This is considered as the equatorial radius of Saturn.
66,900 – 74,510 km D Ring
74,658 – 92,000 km C Ring
92,000 – 117,580 km B Ring
117,580 – 122,170 km Cassini Division
122,170 – 136,775 km A Ring
133,589 km Encke Gap
140,180 km F Ring
151,500 km Orbits of Janus and Epimetheus
189,000 km Orbit of Mimas
1,222,000 km Orbit of Titan

The A and B Rings are the densest ones. They are separated by the Cassini Division, which appears as a lack of material. It actually contains some, arranged as ringlets, but they are very faint. The Encke Gap is a depletion of material as well, in which the small satellite Pan confines the boundaries. Here we are interested in a dusty ring enshrouding the orbits of Janus and Epimetheus, i.e. outside the dense rings. The discovery of this ring had been announced in 2006, this study reveals its characteristics.

The rings of Saturn seen by Cassini. From right to left: the A Ring with the Encke Gap, the Cassini Division, the B Ring, the C Ring, and the D Ring. © NASA
The rings of Saturn seen by Cassini. From right to left: the A Ring with the Encke Gap, the Cassini Division, the B Ring, the C Ring, and the D Ring. © NASA

Janus and Epimetheus

The two coorbital satellites Janus and Epimetheus are a unique case in the Solar System, since these are two bodies with roughly the same size (diameters: ~180 and ~120 km, respectively), which share the same orbit around Saturn. More precisely, they both orbit Saturn in 16 hours, i.e. at the same mean orbital frequency. This is a case of 1:1 mean-motion resonance, involving peculiar mutual gravitational interactions, which prevent them from colliding. They swap their orbits every four years, i.e. the innermost of the two satellites becoming the outermost. The amplitudes of these swaps (26 km for Janus and 95 for Epimetheus) have permitted to know accurately the mass ratio between them, which is 3.56, Janus being the heaviest one.

Interestingly, Epimetheus is the first among the satellites of Saturn for which longitudinal librations have been detected. As many natural satellites, Janus and Epimetheus have a synchronous rotation, showing the same face to a fictitious observer at the surface of Saturn. For Epimetheus, large librations have been detected around this direction, which are a consequence of its elongated shape, and could reveal some mass inhomogeneities, maybe due to variations of porosity, and/or to its pretty irregular shape.

Janus and Epimetheus seen by Cassini (mosaic of 2 images). © NASA
Janus and Epimetheus seen by Cassini (mosaic of 2 images). © NASA

Images of a new ring

So, Cassini images have revealed a dusty ring in that zone. To characterize it, the authors have first extracted images likely to contain it. Such images are made publicly available on NASA’s Planetary Data System. Since that ring had been announced to have been observed on Sept 15th 2006 (see the original press release), the authors restricted to 2 days before and after that date. The data they used were acquired by the ISS (Imaging Science Subsystem) instrument of Cassini, more precisely the NAC and WAC (Narrow- and Wide-Angle-Camera). They finally found 17 images showing the ring.

The images are given as raw data. The authors needed to calibrate their luminosity with a tool (a software) provided by the Cassini team, and sometimes to smooth them, to remove cosmic rays. Moreover, they needed to consider the position of the spacecraft, to be able to precisely locate the structures they would see.

One of the Cassini images used by the authors. I have added red stars at the location of the ring. © NASA / Ciclops
One of the Cassini images used by the authors. I have added red stars at the location of the ring. © NASA / Ciclops

It appears that the ring presents no longitudinal brightness variation. In other words, not only this is a whole ring and not just an arc, but no density variation is obvious. However, it presents radial brightness variations, over a width of 7,500 km, which is wider than the 5,000 km announced in the 2006 press release.

The next step is to understand the dynamics of this ring, i.e. its stability, its origin, the properties of the particles constituting it… Let us start with the stability.

The ring is removed in a few decades

The authors ran N-body simulations, i.e. numerical integrations of the equations ruling the motion of a ring particle, which would be gravitationally perturbed by the surrounding bodies, i.e. Saturn, and the Janus, Epimetheus, Mimas, Enceladus, Tethys, Dione, and Titan. Moreover, for a reason that I will tell you at the end of this article, the authors knew that the particles were smaller than 13 μm. The motions of such small particles are affected by the radiation pressure of the Sun, in other words the Solar light pushes the particles outward.

The authors simulated 14 times the motion of 18,000 particles equally distributed in the rings. Why 14 times? To consider different particle sizes, i.e. one set with 100 μm-sized particles, and the other sets with sizes varying from 1μm to 13μm.
And it appears that these particles collide with something in a few decades, mostly Janus or Epimetheus. This leaves two possibilities: either we were very lucky to be able to take images of the ring while it existed, or a process constantly feeds the ring. The latter option is the most probable one. Let us now discuss this feeding process.

Renewing the ring

The likeliest sources of material for the rings are ejecta from Janus and Epimetheus. The question is: how were these ejecta produced? By impacts, probably. This study show that Janus and Epimetheus are impacted by the particles constituting the rings, but the impact velocities would not permit to produce ejecta. This is why the authors propose a model, in which interplanetary particles collide with the satellites, generating ejecta.

A firefly behavior

And let us finish with something funny: the ring seems to behave like a firefly, i.e. sometimes bright, and sometimes dark, which means undetectable while present.
To understand what happens, figure out how the light would cross a cloud of particles. If the cloud is dense enough, then it would reflect the light, and not be crossed. But for dust, the light would be refracted, i.e. change its direction. This depends on the incidence angle of the Solar light, i.e. on the geometrical configuration of the Sun-Saturn-ring system. The Solar incidence angle is also called phase. And this phase changes with the orbit of Saturn, which results in huge brightness variations of the ring. Sometimes it can be detected, but most of the time it cannot. This can be explained and numerically estimated by the Mie theory, which gives the diffusion of light by small particles. This theory also explains the creation of rainbows, the Solar light being diffracted by droplets of water.

The study and its authors

And that’s it for today! Please do not forget to comment. You can also subscribe to the RSS feed, and follow me on Twitter and Facebook.