Tag Archives: chemistry

Analyzing a crater of Ceres

Hi there! The space mission Dawn has recently visited the small planets Ceres and Vesta, and the use of its different instruments permits to characterize their composition and constrain their formation. Today we focus on the crater Haulani on Ceres, which proves to be pretty young. This is the opportunity for me to present you Mineralogy and temperature of crater Haulani on Ceres by Federico Tosi et al. This paper has recently been published in Meteoritics and Planetary Science.

Ceres’s facts

Ceres is the largest asteroid of the Solar System, and the smallest dwarf planet. A dwarf planet is a planetary body that is large enough, to have been shaped by the hydrostatic equilibrium. In other words, this is a rocky body which is kind of spherical. You can anyway expect some polar flattening, due to its rotation. However, many asteroids look pretty much like potatoes. But a dwarf planet should also be small enough to not clear its vicinity. This means that if a small body orbits not too far from Ceres, it should anyway not be ejected.

Ceres, or (1)Ceres, has been discovered in 1801 by the Italian astronomer Giuseppe Piazzi, and is visited by the spacecraft Dawn since March 2015. The composition of Ceres is close to the one of C-Type (carbonaceous) asteroids, but with hydrated material as well. This reveals the presence of water ice, and maybe a subsurface ocean. You can find below its main characteristics.

Discovery 1801
Semimajor axis 2.7675 AU
Eccentricity 0.075
Inclination 10.6°
Orbital period 4.60 yr
Spin period 9h 4m 27s
Dimensions 965.2 × 961.2 × 891.2 km
Mean density 2.161 g/cm3

The orbital motion is very well known thanks to Earth-based astrometric observations. However, we know the physical characteristics with such accuracy thanks to Dawn. We can see in particular that the equatorial section is pretty circular, and that the density is 2.161 g/cm3, which we should compare to 1 for the water and to 3.3 for dry silicates. This another proof that Ceres is hydrated. For comparison, the other target of Dawn, i.e. Vesta, has a mean density of 3.4 g/cm3.

It appears that Ceres is highly craterized, as shown on the following map. Today, we focus on Haulani.

Topographic map of Ceres, due to Dawn. Click to enlarge. © NASA/JPL-Caltech/UCLA/MPS/DLR/IDA
Topographic map of Ceres, due to Dawn. Click to enlarge. © NASA/JPL-Caltech/UCLA/MPS/DLR/IDA

The crater Haulani

The 5 largest craters found on Ceres are named Kerwan, Yalode, Urvara, Duginavi, and Vinotonus. Their diameters range from 280 to 140 km, and you can find them pretty easily on the map above. However, our crater of interest, Haulani, is only 34 km wide. You can find it at 5.8°N, 10.77°E, or on the image below.

The crater Haulani, seen by <i>Dawn</i>. © NASA / JPL-Caltech / UCLA / Max Planck Institute for Solar System Studies / German Aerospace Center / IDA / Planetary Science Institute
The crater Haulani, seen by Dawn. © NASA / JPL-Caltech / UCLA / Max Planck Institute for Solar System Studies / German Aerospace Center / IDA / Planetary Science Institute

The reason why it is interesting is that it is supposed to be one of the youngest, i.e. the impact creating it occurred less than 6 Myr ago. This can give clues on the response of the material to the impact, and hence on the composition of the subsurface.
Nothing would have been possible without Dawn. Let us talk about it!

Dawn at Ceres

The NASA mission Dawn has been launched from Cape Canaveral in September 2007. Since then, it made a fly-by of Mars in February 2009, it orbited the minor planet (4)Vesta between July 2011 and September 2012, and orbits Ceres since March 2015.

This orbit consists of several phases, aiming at observing Ceres at different altitudes, i.e. at different resolutions:

  1. RC3 (Rotation Characterization 3) phase between April 23, 2015 and May 9, 2015, at the altitude of 13,500 km (resolution: 1.3 km/pixel),
  2. Survey phase between June 6 and June 30, 2015, at the altitude of 4,400 km (resolution: 410 m /pixel),
  3. HAMO (High Altitude Mapping Orbit) phase between August 17 and October 23, 2015, at the altitude of 1,450 km (resolution: 140 m /pixel),
  4. LAMO (Low Altitude Mapping Orbit) / XMO1 phase between December 16, 2015 and September 2, 2016, at the altitude of 375 km (resolution: 35 m /pixel),
  5. XMO2 phase between October 5 and November 4, 2016, at the altitude of 1,480 km (resolution: 140 m / pixel),
  6. XMO3 phase between December 5, 2016 and February 22, 2017, at the altitude varying between 7,520 and 9,350 km, the resolution varying as well, between
  7. and is in the XMO4 phase since April 24, 2017, with a much higher altitude, i.e. between 13,830 and 52,800 km.

The XMOs phases are extensions of the nominal mission. Dawn is now on a stable orbit, to avoid contamination of Ceres even after the completion of the mission. The mission will end when Dawn will run out of fuel, which should happen this year.

The interest of having these different phases is to observe Ceres at different resolutions. The HAMO phase is suitable for a global view of the region of Haulani, however the LAMO phase is more appropriate for the study of specific structures. Before looking into the data, let us review the indicators used by the team to understand the composition of Haulani.

Different indicators

The authors used both topographic and spectral data, i.e. the light reflected by the surface at different wavelengths, to get numbers for the following indicators:

  1. color composite maps,
  2. reflectance at specific wavelengths,
  3. spectral slopes,
  4. band centers,
  5. band depths.

Color maps are used for instance to determine the geometry of the crater, and the location of the ejecta, i.e. excavated material. The reflectance is the effectiveness of the material to reflect radiant energy. The spectral slope is a linear interpolation of a spectral profile by two given wavelengths, and band centers and band depths are characteristics of the spectrum of material, which are compared to the ones obtained in lab experiments. With all this, you can infer the composition of the material.

This requires a proper treatment of the data, since the observations are affected by the geometry of the observation and of the insolation, which is known as the phase effect. The light reflection will depend on where is the Sun, and from where you observe the surface (the phase). The treatment requires to model the light reflection with respect to the phase. The authors use the popular Hapke’s law. This is an empirical model, developed by Bruce Hapke for the regolith of atmosphereless bodies.

VIR and FC data

The authors used data from two Dawn instruments: the Visible and InfraRed spectrometer (VIR), and the Framing Camera (FC). VIR makes the spectral analysis in the range 0.5 µm to 5 µm (remember: the visible spectrum is between 0.39 and 0.71 μm, higher wavelengths are in the infrared spectrum), and FC makes the topographical maps.
The combination of these two datasets allows to correlate the values given by the indicators given above, from the spectrum, with the surface features.

A young and bright region

And here are the conclusions: yes, Haulani is a young crater. One of the clues is that the thermal signature shows a locally slower response to the instantaneous variations of the insolation, with respect to other regions of Ceres. This shows that the material is pretty bright, i.e. it has been less polluted and so has been excavated recently. Moreover, the spectral slopes are bluish, this should be understood as a jargony just meaning that on a global map of Ceres, which is colored according to the spectral reflectance, Haulani appears pretty blue. Thus is due to spectral slopes that are more negative than anywhere else on Ceres, and once more this reveals bright material.
Moreover, the bright material reveals hydrothermal processes, which are consequences of the heating due to the impact. For them to be recent, the impact must be recent. Morever, this region appears to be calcium-rich instead of magnesium-rich like anywhere else, which reveals a recent heating. The paper gives many more details and explanations.

Possible thanks to lab experiments

I would like to conclude this post by pointing out the miracle of such a study. We know the composition of the surface without actually touching it! This is possible thanks to lab experiments. In a lab, you know which material you work on, and you record its spectral properties. And after that, you compare with the spectrum you observe in space.
And this is not an easy task, because you need to make a proper treatment of the observations, and once you have done it you see that the match is not perfect. This requires you to find a best fit, in which you adjust the relative abundances of the elements and the photometric properties of the material, you have to consider the uncertainties of the observations… well, definitely not an easy task.

The study and its authors

And that’s it for today! Please do not forget to comment. You can also subscribe to the RSS feed, and follow me on Twitter, Facebook, Instagram, and Pinterest.

The lunar history

(Alternative title: The search for the origin of the Late Heavy Bombardment)

Hi there! It is a pleasure for me to present you today a multi-disciplinary study, which mixes celestial mechanics with geochemistry. If you want to know the past of a planetary body, you must go backward: you start from the body as you observe it nowadays, and from this you infer the processes which made it evolve from its formation to its present state. In The timeline of the Lunar bombardment – revisited, by A. Morbidelli, D. Nesvorný, V. Laurenz, S. Marchi, D.C. Rubie, L. Elkins-Tanton, M. Wieczorek and S. Jacobson, the authors exploit our observations of the craters and the chemistry of the Moon, and simulations of the motion of asteroids in the early Solar System, to give new constraints on the bombardment of the Moon between 3.9 and 3.7 Gyr (billions of years) ago, which is famous as the Late Heavy Bombardment (LHB). We will see that the results have implications for Mars. This study has recently been accepted for publication in Icarus.

The Lunar basins

Let us start from what we observe: the Lunar surface. This is a heavily cratered surface. Actually, the absence of atmosphere preserves it from erosion, and the small size of the Moon limits its heating, as a consequence the craters neither erode nor relax. Hence, the surface of the Moon is a signature of the activity in the early Solar System.

Let us focus on the largest structures, i.e. the maria and the basins. The maria are lava plains, which result from a volcanic activity of the early Moon. However, the basins are the largest impact craters. You can find below the largest ones, of course many smaller craters exist.

Basin Diameter (km)
South Pole-Aitken 2,600
Imbrium 1,100
Orientale 930
Serenitatis 920
Australe 880
Nectaris 860
Smythii 740
Crisium 740
Tranquillitatis 700
Tsiolkovsky-Stark 700
Fecunditatis 690
Mutus-Vlacq 690
Nubium 690

The early Moon was hot, because of the impact which created it. As a hot body, it stratified into a fluid core, a mantle and a crust, while cooling. The visible impact craters are younger than the crust, i.e. they are younger than 3.9 Gyr, and were created at least 600 Myr after the formation of the Moon… pretty late, hence due to the Late Heavy Bombardment.

Orientale Basin. © NASA
Orientale Basin. © NASA

Origin of the LHB: cataclysm or accretion tail?

Late Heavy Bombardment means that the inner Solar System have been intensively bombarded late after its genesis. But how did that happen? Two scenarios can be found in the literature:

  1. Cataclysm: the very young Solar System was very active, i.e. composed of many small bodies which collided, partly accreting… and became pretty quiet during some hundreds of Myr… before suddenly, a new phase of bombardment occurred.
  2. Accretion tail: the Solar System had a slowly decreasing activity, and the craters on the Moon are just the signature of the last 200 Myrs. The previous impacts were not recorded, since the surface was still molten.

The second scenario could be preferred, as the simplest one. The first one needs a cause which would trigger this second phase of bombardment. Anyway, many numerical simulations of the early Solar System got such an activity, as a dynamical phenomenon destabilizing the orbits of a group of small bodies, which themselves entered the inner Solar System and collided with the planets, accreting on them. The giant planets Jupiter and Saturn have a dominant dynamical influence on the small bodies of the Solar System, and could have triggered such an instability. One of the theories existing in the literature is the E-Belt, for extended belt. It would have been an internal extension of the Main Belt of asteroids, which would have been destabilized by a secular resonance with Saturn, and has finished as the impactors of the LHB. Why not, this is a theory.

When you model phenomena having occurred several billions years ago, you have so many uncertainties that you cannot be certain that your solution is the right one. This is why the literature proposes several scenarios. Further studies test them, and sometimes (this is the case here) give additional constraints, which refine them.

Thanks to the Apollo mission, samples of the Moon have been analyzed on Earth, and geochemistry can tell us many things on the history of a body. For the Moon, focus has been put on siderophile elements.

What siderophile elements tell us

A siderophile element is a chemical element which has affinity with iron. Among these elements are iron, iridium, palladium, platinum, rubidium… When a planetary body is hot, it tends to differentiate, and its heaviest elements, i.e. iron, migrate to the core. This results in a depletion of highly siderophile elements (HSE). Since a very small abundance of these elements has been observed, then we have no problem, thank you…

NO NO NO there is actually a problem, since these siderophile elements should be present in the impactors, which are supposed to have accreted on the Moon AFTER its stratification… yes we have a problem.

But some of the authors have shown recently that on Earth, another phenomenon could remove the HSEs from the crust, well after the formation of the core: the exsolution and segregation of iron sulfide. In other words, the bombardment could have brought more HSEs than currently recorded. And this motivates to revisite the history of the Lunar bombardment.

Simulating the bombardment

So, the observations are: the craters, and the HSEs. The craters are not only the basins, but also the smaller ones, with diameters larger than 1 km. Even smaller craters could be used, but the data are considered to be reliable, i.e. exhaustive, for craters larger than 1 km. From that size to the large basins, we can fit a function of distribution, i.e. number of craters vs. diameter. Since there is an obvious correlation between the size of a crater and the one of the impactor, a population of craters corresponds to a population of impactors.

The authors dispose of statistics of collisions, which could be seen as mass accretion, between the Moon and small bodies during the early ages of the Solar System. These statistics result from numerical simulations conducted by some of them, and they can be fine-tuned to fit the crater distribution, their estimated ages, and the abundance of highly siderophile elements. Fine-tuning the statistics consist in artificially moving the parameters of the simulation, for instance the initial number of small bodies, or the date of the instability provoking the cataclysm, in the cataclysm scenario.

Cataclysm possible, accretion tail preferred

And here is the result: if the HSEs are only due to the mass accretion after the cooling of the Lunar crust, then the observations can only be explained by the cataclysm, i.e. the LHB would be due to a late instability. This instability would have resulted in a mass accretion from comets, and this raises another problem: this accretion seems to lack of primitive, carbonaceous material, while the comets contain some.

However, if the HSEs have been removed after the cooling of the crust, then the accretion tail scenario is possible.

We should accept that for this kind of study, the solution is not unique. A way to tend to the unicity of the solution is to discuss further implications, in examining other clues. And the authors mention the tungsten.

Tungsten is another marker

Tungsten is rather a lithophile than a siderophile element, at least in the presence of iron sulfide. In other words, even if it does not dislike iron, it prefers lithium (I like this way of discussing chemistry). Something puzzling is a significant difference in the ratios of two isotopes of tungsten (182W and 184W) between the Moon and the Earth. This difference could be primordial, as brought by the projectile which is supposed to have splitted the proto-Earth into the Earth and the Moon (nickname of the projectile: Theia), or it could be due to the post-formation mass accumulation. In that case, that would be another constraint on the LHB.

Implications for Mars

The LHB has affected the whole inner Solar System. So, if a scenario is valid for the Moon, it must be valid for Mars.
This is why the authors did the job for Mars as well. A notable difference is that Mars would be less impacted by comets than the Moon, and this would affect the composition of the accreted material. More precisely, a cataclysmic LHB would be a mixture of asteroids and comets, while an accretion tail one would essentially consist of leftover planetesimals. It appears that this last scenario, i.e. the accretion tail one, can match the distribution of craters and the abundance of HSEs. However, the cataclysmic scenario would not bring enough HSEs on Mars.

Predictions

This study tells us that the accretion tail scenario is possible. The authors show that it would imply that

  1. The quantity of remaining HSEs on the Moon is correlated with the crystallization of the Lunar magma ocean, which itself regulates the age of the earliest Lunar crust.
  2. For Mars, the Noachian era would have started 200 Myr earlier than currently thought, i.e. 4.3 Gyr instead of 4.1 Gyr. That period is characterized by high rates of meteorite and asteroid impacts and the possible presence of abundant surface water. Moreover, the Borealis formation, i.e. the northern hemisphere of Mars, which seems to be a very large impact basin, should have been formed 4.37 Gyr ago.

Further studies, explorations, space missions, lab experiments,… should give us new data, which would challenge these implications and refine these scenarios. So, the wording prediction can seem weird for past phenomena, but the prediction is for new clues.

The study and its authors

And that’s it for today! Please do not forget to comment. You can also subscribe to the RSS feed, and follow me on Twitter and Facebook.

The chemistry of Pluto

Hi there! The famous dwarf planet Pluto is better known to us since the flyby of the spacecraft New Horizons in 2015. Today, I tell you about its chemistry. I present you Solid-phase equilibria on Pluto’s surface, by Sugata P. Tan & Jeffrey S. Kargel, which has recently been accepted for publication in The Monthly Notices of the Royal Astronomical Society.

The atmosphere of Pluto

I do not want here to recall everything about Pluto. This is a dwarf planet, which has been discovered by Clyde Tombaugh in 1930. It orbits most of the time outside the orbit of Neptune, but with such an eccentricity that it is sometimes inside. It was discovered in 1978 that Pluto has a large satellite, Charon, so large that the system Pluto-Charon can be seen as a binary object. This binary has at least 4 small satellites, which were discovered thanks to the Hubble Space Telescope.

Pluto has a tenuous atmosphere. It was discovered from the Earth in 1985 in analyzing a stellar occultation: when a faint, atmosphereless object is aligned between a star and a observer, the observer does not see the star anymore. However, when the object has an atmosphere, the light emitted by the star is deviated, and can even be focused by the atmosphere, resulting in a peak of luminosity.

Several occultations have permitted to constrain the atmosphere. It has been calculated that its pressure is about 15 μbar (the one of the Earth being close to 1 bar, so it is very tenuous), and that it endured seasonal variations. By seasonal I mean the same as for the Earth: because of the variations of the Sun-Pluto distance and the obliquity of Pluto, which induces that every surface area has a time-dependent insolation, thermic effects affect the atmosphere. This can be direct effects, i.e. the Sun heats the atmosphere, but also indirect ones, in which the Sun heats the surface, triggering ice sublimation, which itself feeds the atmosphere. The seasonal cycle, i.e. the plutonian (or hadean) year lasts 248 years.

Observations have shown that this atmosphere is hotter at its top than at the surface, i.e. the temperature goes down from 110 K to about 45 K (very cold anyway). This atmosphere is mainly composed of nitrogen N2, methane CH4, and carbon monoxide CO.

The surface of Pluto

The surface is known to us thanks to New Horizons. Let me particularly focus on two regions:

  • Sputnik Planitia: this is the heart that can be seen on a map of Pluto. It is directed to Charon, and is covered by volatile ice, essentially made of nitrogen N2,
  • Cthulhu Regio: a large, dark reddish macula, on which the volatile ice is absent.
A map of Pluto (mosaic made with New Horizons data). © NASA
A map of Pluto (mosaic made with New Horizons data). © NASA

The reason why I particularly focus on these two regions is that they have two different albedos, i.e. the bright Sputnik Planitia is very efficient to reflect the incident Solar light, while Cthulhu Regio is much less efficient. This also affects the temperature: on Sputnik Planitia, the temperature never rises above 37 K, while it never goes below 42.5 K in Cthulhu Regio. We will see below that it affects the composition of the surface.

An Equation Of State

The three main components, i.e. nitrogen, methane, and carbon monoxide, have different sublimation temperatures at 11μbar, which are 36.9 K, 53 K, and 40.8 K, respectively (sublimation: direct transition from the solid to the gaseous state. No liquid phase.). A mixture of them will then be a coexistence of solid and gaseous phases, which depends on the temperature, the pressure, and the respective abundances of these 3 chemical components. The pressure is set to 11μbar, since it was the pressure measured by New Horizons, but several temperatures should be considered, since it is not homogeneous. The authors considered temperatures between 36.5 K and 41.5 K. Since the atmosphere has seasonal variations, a pressure of 11μbar should be considered as a snapshot at the closest encounter with New Horizons (July 14, 2015), but not as a mean value.

The goal of the authors is to build an Equation Of State giving the phases of a given mixture, under conditions of temperature and pressure relevant for Pluto. The surface is thus seen as a multicomponent solid solution. For that, they develop a model, CRYOCHEM for CRYOgenic CHEMistry, which aims at predicting the phase equilibrium under cryogenic conditions. The paper I present you today is part of this development. Any system is supposed to evolve to a minimum of energy, which is an equilibrium, and the composition of the surface of Pluto is assumed to be in thermodynamic equilibrium with the atmosphere. The energy which should be minimized, i.e. the Helmholtz energy, is related to the interactions between the molecules. A hard-sphere model is considered, i.e. a minimal distance between two adjacent particles should be maintained, and for that the geometry of the crystalline structure is considered. Finally, the results are compared with the observations by New Horizons.

Such a model requires many parameters. Not only the pressure and temperature, but also the relative fraction of the 3 components, and the parameters related to the energies involved. These parameters are deduced from extrapolations of lab experiments.

Results

The predicted coexistence of states predicted by this study is consistent with the observations. Moreover, it shows that the small fraction of carbon monoxide can be neglected, as the behavior of the ternary mixture of N2/CH4/CO is very close to the one of the binary N2/CH4. This results in either a nitrogren-rich solid phase, for the coolest regions (the bright Sputnik Planitia, e.g.), and a methane-rich solid phase for the warmest ones, like Cthulhu Regio.

Developing such a model has broad implications for predicting the composition of bodies’s surfaces, for which we lack of data. The authors give the example of the satellite of Neptune Triton, which size and distance to the Sun present some similarities with Pluto. They also invite the reader to stay tuned, as an application of CRYOCHEM to Titan, which is anyway very different from Pluto, is expected for publication pretty soon.

The study and its authors

And that’s it for today! Please do not forget to comment. You can also subscribe to the RSS feed, and follow me on Twitter and Facebook.

The composition of Himalia, Elara, and Carme

Hi there! Today I tell you on 3 irregular satellites of Jupiter, you know, these small bodies which orbit very far from the planet. Himalia, Elara and Carme have been observed in the Near-InfraRed (NIR), and this gave Composition of Jupiter irregular satellites sheds light on their origin, by M. Bhatt et al., which has been recently accepted for publication in Astronomy and Astrophysics.

The irregular satellites of Jupiter

Jupiter has 69 known satellites, which we can divide into 3 groups:

  1. The 4 Galilean satellites Io, Europa, Ganymede and Callisto. These are large bodies, discovered in 1610 by Galileo Galilei,
  2. The 4 inner satellites Amalthea, Metis, Adrastea, and Thebe. These are small bodies, orbiting inside the orbit of Io,
  3. The irregular satellites, which orbit very far from Jupiter. These are small bodies as well, which are usually thought to have been captured, i.e. they probably not formed in the protojovian nebula.

Contrary to the inner and the Galilean satellites, the irregular satellites have pretty eccentric and inclined orbits. Their eccentricities may exceed 0.4, and most of them are retrograde, i.e. with an inclination larger than 90°. In fact, plotting their inclination vs. their semimajor axes reveals clustering.

Semimajor axes and inclinations of the irregular satellites of Jupiter. The inclinations are given with respect to the ecliptic.
Semimajor axes and inclinations of the irregular satellites of Jupiter. The inclinations are given with respect to the ecliptic.

At least 4 dynamical groups have been defined, all of them being named after the largest of their members:

  1. The Himalia group is made of prograde bodies, with inclinations between 26.6° and 28.3°, eccentricities between 0.11 and 0.25, and semimajor axes between 159 and 176 Jupiter radii (while Callisto orbits at 27 Jupiter radii),
  2. The Ananke group is composed of bodies with inclinations between 145.7° and 154.8°, eccentricities between 0.02 and 0.28, and semimajor axes between 250 and 305 Jupiter radii,
  3. The Pasiphase group is made of bodies with inclinations between 144.5° and 158.3°, eccentricities between 0.25 and 0.43, and semimajor axes between 320 and 350 Jupiter radii,
  4. The Carme group is made of bodies with inclinations between 164.9° and 165.5°, eccentricities between 0.23 and 0.27, and semimajor axes between 329 and 338 Jupiter radii

The clustering among these bodies suggests a common origin, i.e. a group of objects would have a unique progenitor. It is also interesting to notice that some groups are more dispersed than others. In particular, the dispersion of the Carme group is very limited. This could tell us something on the date of the disruption of the progenitor. Another clue regarding a common origin is the composition of these bodies.

Before addressing our 3 objects of interest, i.e. Himalia, Elara (member of the Himalia group), and Carme, I would like to mention Themisto and Carpo, which seem to be pretty isolated, and so would not share a common origin with the other bodies. Their dynamics might be affected by the Kozai-Lidov mechanism, which induces a correlated periodic evolution of their eccentrities and inclinations.

Himalia, Elara, and Carme

These 3 bodies are the ones addressed in this study. You can find below their relevant characteristics.

Semimajor axis Eccentricity Inclination Discovery Radius Albedo
Himalia 163.9 Rj 0.16 27.50° 1904 70-80 km 0.04
Elara 167.9 Rj 0.22 26.63° 1905 43 km 0.04
Carme 334.7 Rj 0.25 164.91° 1938 23 km 0.04

These were among the first known irregular moons of Jupiter. The inclinations are given with respect to the ecliptic, i.e. the orbital plane of the Earth. As a member of the Himalia group, Elara has similar dynamical properties with Himalia. We can also notice the small albedo of these bodies, i.e. of the order of 4%, which means that only 4% of the incident Solar light is reflected by the surface! In other words, these bodies are very dark, which itself suggests a carbonaceous composition. Spectroscopic observations permit to be more accurate.

Spectroscopic observations

These bodies were observed in the near infrared, at wavelengths between 0.8 and 5.5 μm. The observations were made at the IRTF (InfraRed Telescope Facility), located on the Mauna Kea (Hawai’i), with the SpeX spectrograph, during 4 nights, in 2012 and 2013. In measuring the light flux over a specific range of the spectrum, one can infer the presence of some material, which would absorb the light at a given wavelength. For that, we need to be accurate in the measurements, while the atmospheric conditions might alter them. This difficulty is by-passed by the presence of a star in the field, which serves as a reference for the measured light flux.

Detection of minerals

Once a spectrum reflectance vs. wavelength is obtained, it needs to be interpreted. In this study, the authors assumed that the observed spectra were a mixture of the spectra given by different minerals, which have been obtained in laboratories. They disposed of a database of 30 minerals, and fitted mixtures involving 4 of them, to the obtained spectra. This is an optimization algorithm, here named Spectral Mixture Analysis, which fits the relative proportion of the minerals. 4 minerals is actually the best they could obtain, i.e. they failed to produce a significantly better fit in adding a 5th mineral.

In other words, from the absorption spectrum of such a body, you can guess its 4 main components… at least of the surface.

Himalia and Elara are alike, Carme is different

Well, the title contains the conclusion. This is not very surprising, since Himalia and Elara belong to the same group. We can say that the composition confirms the guess that they should have a common origin. Previous studies gave the same conclusions.

In this specific case, Himalia and Elara have a peak of absorption centered around 1.2 μm, and their spectra are similar to C-type, i.e. carbonaceous, asteroids (52) Europa and (24) Themis, of the outer asteroid belt. The best match for Himalia is obtained with a mixture of magnetite and ilmenite, both being iron oxides, with minnesotaite, which is a ferric phyllosilicate. Elara seems to have a similar composition, but the match is not that good. In particular, the spectrum is more dispersed than for Himalia, and a little redder.

Carme has a different spectrum, with a peak of absorption centered around 1.6 μm, and is probably composed of black carbon, minnesotaite, and ilmenite. Another study has proposed that Carme could have a low-level cometary activity, but that would require to observe it at shorter wavelengths. Out of the scope of this study.

The study and the authors

That’s it for today! Please do not forget to comment. You can also subscribe to the RSS feed, and follow me on Twitter and Facebook.

The lowlands of Mars

Hi there! Today I will give you the composition of the subsurface of the lowlands of Mars. This is the opportunity for me to present you The stratigraphy and history of Mars’ northern lowlands through mineralogy of impact craters: A comprehensive survey, by Lu Pan, Bethany L. Ehlmann, John Carter & Carolyn M. Ernst, which has recently been accepted for publication in Journal of Geophysical Research: Planets.

Low- and Highlands

Topography of Mars. We can see lowlands in the North, and highlands in the South. © USGS
Topography of Mars. We can see lowlands in the North, and highlands in the South. © USGS

As you can see on this image, the topography of Mars can be divided into the Northern and the Southern hemispheres, the Northern one (actually about one third of the surface) being essentially constituted of plains, while the Southern one is made of mountains. The difference of elevation between these two hemispheres is between 1 to 3 km. Another difference is the fact that the Southern hemisphere is heavily cratered, even if craters exist in the lowlands. This Martian dichotomy is very difficult to explain, some explanations have been proposed, e.g., the lowlands could result from a single, giant impact, or the difference could be due to internal (tectonic) processes, which would have acted differentially, renewing the Northern hemisphere only… Anyway, whatever the cause, there is a dichotomy in the Martian topography. This study examines the lowlands.

The lowlands are separated into: Acidalia Planitia (for plain), Arcadia Planitia, Amazonis Planitia, Chryse Planitia, Isidis Planitia, Scandia Cavi (the polar region), Utopia Planitia, Vatistas Borealis,…

Plains also exist in the Southern hemisphere, like the Hellas and the Argyre Planitiae, which are probably impact basins. But this region is mostly known for Olympus Mons, which is the highest known mountain is the Solar System (altitude: 22 km), and the Tharsis Montes, which are 3 volcanoes in the Tharsis region.

To know the subsurface of a region, and its chemical composition, the easiest way is to dig… at least on Earth. On Mars, you are not supposed to affect the nature… Fortunately, the nature did the job for us, in bombarding the surface. This bombardment was particularly intense during the Noachian era, which correspond to the Late Heavy Bombardment, between 4.1 to 3.7 Gyr ago. The impacts excavated some material, that you just have to analyze with a spectrometer, provided the crater is preserved enough. This should then give you clues on the past of the region. Some say the lowlands might have supported a global ocean once.

The past ocean hypothesis

Liquid water seems to have existed at the surface of Mars, until some 3.5 Gyr ago. There are evidences of gullies and channels in the lowlands. This would have required the atmosphere of Mars to be much hotter, and probably thicker, than it is now. The hypothesis that the lowlands were entirely covered by an ocean has been proposed in 1987, and been supported by several data and studies since then, even if it is still controversial. Some features seem to be former shorelines, and evidences of two past tsunamis have been published in 2016. These evidences are channels created by former rivers, which flowed from down to the top. These tsunamis would have been the consequences of impacts, one of them being responsible for the crater Lomonosov.

The fate of this ocean is not clear. Part of it would have been evaporated in the atmosphere, and then lost in the space, part of it would have hydrated the subsurface, before freezing… This is how the study of this subsurface may participate in the debate.

The CRISM instrument

To study the chemical composition of the material excavated by the impacts, the authors used CRISM data. CRISM, for Compact Reconnaissance Imaging Spectrometer for Mars, is an instrument of Mars Reconnaissance Orbiter (MRO). MRO is a NASA spacecraft, which orbits Mars since 2006.
CRISM is an imaging spectrometer, which can observe both in the visible and in the infrared ranges, which requires a rigorous cooling of the instrument. These multi-wavelengths observations permit to identify the different chemical elements composing the surface. The CRISM team summarizes its scientific goals by follow the water. Studying the chemical composition would permit to characterize the geology of Mars, and give clues on the past presence of liquid water, on the evolution of the Martian climate,…

In this study, the authors used CRISM data of 1,045 craters larger than 1 km, in the lowlands. They particularly focused on wavelengths between 1 and 2.6μm, which is convenient to identify hydrated minerals.

Hydrated vs. mafic minerals

The authors investigated different parts of the craters: the central peak, which might be constituted of the deepest material, the wall, the floor… The CRISM images should be treated, i.e. denoised before analysis. This requires to perform a photometric, then an atmospheric correction, to remove spikes, to eliminate dead pixels…

And after this treatment, the authors identified two kinds of minerals: mafic and hydrated ones. Mafic minerals are silicate minerals, in particular olivine and pyroxenes, which are rich in magnesium and iron, while hydrated minerals contain water. They in particular found a correlation between the size of the crater and the ratio mafic / hydrated, in the sense that mafic detections are less dependent on crater size. Which means that mafic minerals seem to be ubiquitous, while the larger the crater, the likelier the detection of hydrated minerals. Since larger craters result from more violent impacts, this suggests that hydrated minerals have a deeper origin. Moreover, no hydrated material has been found in the Arcadia Planitia, despite the analysis of 85 craters. They also noticed that less degraded craters have a higher probability of mineral detection, whatever the mineral.

However, the authors did not find evidence of concentrated salt deposits, which would have supported the past ocean hypothesis.

The study and the authors

That’s it for today! Please do not forget to comment. You can also subscribe to the RSS feed, and follow me on Twitter and Facebook.