Tag Archives: Ganymede

Fracturing the crust of an icy satellite

Hi there! You may know that the space missions to the systems of giant planets have revealed that the surface of several of theirs satellites are fractured. We dispose of images of such structures on Jupiter’s Europa and Ganymede, Saturn’s Enceladus (the famous tiger stripes at its South Pole), and even on Uranus’ Miranda, which has been visited by Voyager II. These satellites are thought to be icy bodies, with an icy crust enshrouding a subsurface, global ocean (maybe not for Miranda, but certainly true for the other guys).

The study I present you today, Experimental constraints on the fatigue of icy satellite lithospheres by tidal forces, by Noah P. Hammond, Amy C. Barr, Reid F. Cooper, Tess E. Caswell, and Greg Hirth, has recently been accepted for publication in Journal of Geophysical Research: Planets. The authors particularly tried to produce in labs the process of fatigue, which would weaken a material after a certain number of solicitations, i.e. it would become easier to break.

Cycloids on Europa

The Galilean satellite of Jupiter Europa may be the most interesting satellite to focus on, since it is the most fractured, at least to the best of our knowledge. The observation of the surface of Europa, first by Voyager I and II in 1979, and after by Galileo between 1995 and 2003, revealed many structures, like lineae, i.e. cracks, due to the geophysical activity of the satellite. This body is so active that only few craters are visible, the surface having been intensively renewed since the impacts. Something particularly appealing on Europa is that some of these lineae present a cycloidal pattern, which would reveal a very small drift of the orientation of the surface. Some interpret it has an evidence of super-synchronous rotation of Europa, i.e. its rotation would not be exactly synchronous with its orbital motion around Jupiter.

Cycloids on Europa, seen by the spacecraft Galileo. © NASA
Cycloids on Europa, seen by the spacecraft Galileo. © NASA

Beside Europa, fractures have also been observed on Ganymede, but with less frequency. For having such fractures, you need the surface to be brittle enough, so that stress will fracture it. This is a way to indirectly detect a subsurface ocean. But you also need the stress. And this is where tides intervene.

Fractures on Ganymede. © Paul M. Schenk
Fractures on Ganymede. © Paul M. Schenk

Tides can stress the surface

You can imagine that Jupiter exerts a huge gravitational action on Europa. But Europa is not that small, and its finite size results in a difference of Jovian attraction between the point which is the closest to Jupiter, and the furthest one. The result of this differential attraction is stress and strain in the satellite. The response of the satellite will depend on its structure.

A problem is that calculations suggest that the tidal stress may be too weak to generate alone the observed fractures. This is why the authors suggest the assistance of another phenomenon: fatigue crack growth.

The phenomenon of fatigue crack growth

The picture is pretty intuitive: if you want to break something… let’s say a spoon. You twist it, bend it, wring it… once, twice, thrice, more… Pretty uneasy, but you do not give up, because you see that the material is weakening. And finally it breaks. Yes you did it! But what happened? You slowly created microcracks in the spoon, which weakened it, the cracks grew… until the spoon broke.

For geophysical materials, it works pretty much the same: we should imagine that the tides, which vary over an orbit since the eccentricity of the orbit induces variations of the Jupiter-Europa distance, slowly create microcracks, which then grow, until the cracks are visible. To test this scenario, the authors ran lab experiments.

Lab experiments

The lab experiments consisted of Brazil Tests, i.e. compression of circular disks of ice along their diameter between curved steel plates. The resulting stress was computed everywhere in the disk thanks to a finite-element software named Abaqus, and the result was analyzed with acoustic emissions, which reflections would reveal the presence of absence of microcracks in the disk. The authors ran two types of tests: both with cyclic loading, i.e. oscillating loading, but one with constant amplitude, and the other one with increasing amplitude, i.e. a maximum loading becoming stronger and stronger.

But wait: how to reproduce the conditions of the real ice of these satellites? Well, there are things you cannot do in the lab. Among the problems are: the exact composition of the ice, the temperature, and the excitation frequency.

The authors conducted the experiments in assuming pure water ice. The temperature could be below 150 K (-123°C, or -189°F), which is very challenging in a lab, and the main period of excitation is the orbital one, i.e. 3.5 day… If you want to reproduce 100,000 loading cycles, you should wait some 1,000 years… unfeasible…

The authors bypassed these two problems in constraining the product frequency times viscosity to be valid, the viscosity itself depending on the temperature. This resulted in an excitation period of 1 second, and temperatures between 198 and 233 K (-75 to -40°C, or -103 to -40°F). The temperature was maintained thanks to a liquid nitrogen-cooled, ethanol bath cryostat.

And now the results!

No fatigue observed

Indeed, the authors observed no fatigue, i.e. no significant microcracks were detected, which would have altered the material enough, to weaken it. This prompted the authors to discuss the application of their experiments for understanding the crust of the real satellites, and they argue that fatigue could be possible anyway.

Why fatigue may still be possible

As the authors recall, these experiments are not the first ones. Other authors have had a negative result with pure water ice. However, fatigue has been detected on sea ice, which could mean that the presence of salt favors fatigue. And the water ice of icy satellite may not be pure. Salt and other chemical elements may be present. So, even if these experiments did not reveal fatigue, there may be some anyway.

But the motivation for investigating fatigue is that a process was needed to assist the tides to crack the surface. Why necessarily fatigue? Actually, other processes may weaken the material.

How to fracture without fatigue

The explanation is like the most (just a matter of taste) is impacts: when you impact the surface, you break it, which necessarily weakens it. And we know that impacts are ubiquitous in the Solar System. In case of an impact, a megaregolith is created, which is more likely to get fractured. The authors also suggest that the tides may be assisted, at least for Europa, by the super-synchronous rotation possibly suggested by the geometry of the lineae (remember, the cycloids). Another possibility is the large scale inhomogeneities in the surface, which could weaken it at some points.

Anyway, it is a fact that these surfaces are fractured, and the exact explanation for that is still in debate!

The study and its authors

And that’s it for today! Please do not forget to comment. You can also subscribe to the RSS feed, and follow me on Twitter, Facebook, Instagram, and Pinterest.

Resurfacing Ganymede

Hi there! After Europa last week, I tell you today on the next Galilean satellite, which is Ganymede. It is the largest planetary satellite in the Solar System, and it presents an interesting surface, i.e. with different terrains showing evidence of past activity. This is the opportunity for me to present you Viscous relaxation as a prerequisite for tectonic resurfacing on Ganymede: Insights from numerical models of lithospheric extension, by Michael T. Bland and William B. McKinnon. This study has recently been accepted for publication in Icarus.

The satellite Ganymede

Ganymede is the third, by its distance to the planet, of the 4 Galilean satellites of Jupiter. It was discovered with the 3 other ones in January 1610 by Galileo Galilei. These are indeed large bodies, which means that they could host planetary activity. Io is known for its volcanoes, and Europa and Ganymede (maybe Callisto as well) are thought to harbour a global, subsurfacic ocean. The table below lists their size and orbital properties, which you can compare with the 5th satellite, Amalthea.

Semimajor axis Eccentricity Inclination Radius
J-1 Io 5.90 Rj 0.0041 0.036° 1821.6 km
J-2 Europa 9.39 Rj 0.0094 0.466° 1560.8 km
J-3 Ganymede 14.97 Rj 0.0013 0.177° 2631.2 km
J-4 Callisto 26.33 Rj 0.0074 0.192° 2410.3 km
J-5 Amalthea 2.54 Rj 0.0032 0.380° 83.45 km

We have images of the surface of Ganymede thanks to the spacecraft Voyager 1 & 2, and Galileo. These missions have revealed different types of terrains, darker and bright, some impacted, some pretty smooth, some showing grooves… “pretty smooth” should be taken with care, since the feeling of smoothness depends on the resolution of the images, which itself depends on the distance between the spacecraft and the surface, when this specific surface element was directed to the spacecraft.

Dark terrain in Galileo Regio. © NASA
Dark terrain in Galileo Regio. © NASA
Bright terrain with grooves and a crater. © NASA
Bright terrain with grooves and a crater. © NASA

A good way to date a terrain is to count the craters. It appears that the dark terrains are probably older than the bright ones, which means that a process renewed the surface. The question this paper addresses is: which one(s)?

Marius Regio and Nippur Sulcus. © NASA
Marius Regio and Nippur Sulcus. © NASA

Resurfacing a terrain

These four mechanisms permit to renew a terrain from inside:

  • Band formation: The lithosphere, i.e. the surface, is fractured, and material from inside takes its place. This phenomenon is widely present on Europa, and probably exists on Ganymede.
  • Viscoelastic relaxation: When the crust has some elasticity, it naturally smooths. As a consequence, craters tend to disappear. Of course, this phenomenon is a long-term process. It requires the material to be hot enough.
  • Cryovolcanism: It is like volcanism, but with the difference that the ejected material is mainly composed of water, instead of molten rock. Part of the ejected material falls on the surface.
  • Tectonics: Extensional of compressional deformations of the lithosphere. This is the phenomenon, which is studied here.

Beside these processes, I did not mention the impacts on the surface, and the erosion, which is expected to be negligible on Ganymede.

The question the authors addressed is: could tectonic resurfacing be responsible for some of the actually observed terrains on Ganymede?

Numerical simulations

To answer this question, the authors used the numerical tool, more precisely the 2-D code Tekton. 2-D means that the deformations below the surface are not explicitly simulated. Tekton is a viscoelastic-plastic finite element code, which means that the surface is divided into small areas (finite elements), and their locations are simulated with respect to the time, under the influence of a deforming cause, here an extensional deformation.

The authors used two kinds of data, that we would call initial conditions for numerical simulations: simulated terrains, and real ones.
The simulated terrains are fictitious topographies, varying by the amplitude and frequency of deformation. The deformations are seen as waves, the wavelength being the distance between two peaks. A smooth terrain can be described by long-wavelength topography, while a rough one will have short wavelength.
The real terrains are Digital Terrain Models, extracted from spacecraft data.

The authors also considered different properties of the material, like the elasticity, or the cohesion.

A new scenario of resurfacing

It results from the simulations that the authors can reproduce smooth terrains with grooves, starting from already smooth terrains without grooves. However, extensional tectonics alone cannot remove the craters. In other words, if you can identify craters at the surface of Ganymede, after millions of years of extensional tectonics you will still observe them. To make smooth terrains, you need the assistance of another process, the viscoelastic relaxation of the lithosphere being an interesting candidate.

This pushed the authors to elaborate a new scenario of resurfacing of Ganymede, involving different processes.
They consider that the dark terrains are actually the eldest ones, having remaining intact. However, there was indeed tectonic resurfacism of the bright terrains, which formed grooved. But the deformation of the lithosphere was accompanied by an elevation of the temperature (which is not simulated by Tekton), which itself made the terrain more elastic. This elasticity itself relaxed the craters.

Anyway, you need elasticity (viscoelasticity is actually more accurate, since you have energy dissipation), and for that you need an elevation of the local temperature. This may have been assisted by heating due to internal processes.

In the future

Ganymede is the main target of the ESA mission JUICE, which should orbit it 2030. We expect a big step in our knowledge of Ganymede. For this specific problem, we will have a much better resolution of the whole surface, the gravity field of the body (which is related to the interior), maybe a magnetic field, which would constrain the subsurface ocean and the depth of the crust enshrouding it, and the Love number, which indicates the deformation of the gravity field by the tidal excitation of Jupiter. This last quantity contains information on the interior, but it is related to the whole body, not specifically to the structure. I doubt that we would have an accurate knowledge of the viscoelasticity of the crust. Moreover, the material properties which created the current terrains may be not the current ones; in particular the temperature of Ganymede is likely to have varied over the ages. We know for example that this temperature is partly due to the decay of radiogenic elements shortly after the formation of the satellite. During this heating, the satellite stratifies, which alters the tidal response to the gravitational excitation of Jupiter, and which itself heats the satellite. This tidal response is also affected by the obliquity of Ganymede, by its eccentricity, which is now damped… So, the temperature is neither constant, nor homogeneous. There will still be room for theoretical studies and new models.

The study and its authors

And that’s it for today! Please do not forget to comment. You can also subscribe to the RSS feed, and follow me on Twitter and Facebook.

Resonances around the giant planets

Hi there! Today the release of the paper Classification of satellite resonances in the Solar System, by Jing Luan and Peter Goldreich, is the opportunity for me to present you the mean-motion resonances in the system of satellites of the giant planets. That paper has recently been published in The Astronomical Journal, but the topic it deals with is present in the literature since more than fifty years. This is why I need to detail some of the existing works.

The mean-motion resonances (MMR)

Imagine that you have a planet orbited by two satellites. In a convenient case, their orbits will be roughly elliptical. The ellipse results from the motion of a small body around a large spherical one; deviations from the exact elliptical orbit come from the oblateness of the central body and the gravitational perturbation of the other satellite. If the orbital frequencies of the two satellites are commensurate, i.e. if Satellite A accomplishes N revolutions around the planet, while Satellite B accomplishes (almost exactly) M revolutions, i.e. M orbits, N and M being integers, then the 2 satellites will be in a configuration of mean-motion resonance. It can be shown that the perturbation of A on B (respectively of B on A) will not average to 0 but have a cumulative effect, due to the repetition, at the same place, of the smallest distance between the two bodies, the smallest distance meaning the highest gravitational torque. A consequence of a MMR is the increase of the eccentricity of one of the satellites, or of both of them, and / or their inclinations… or only the inclination of one of them. In the worst case, this could result in the ejection of one of the satellites, but it can also have less catastrophic but not less interesting consequences, like the heating of a body, and the evolution of its internal structure… We will discuss that a little later.

A mean-motion resonance can be mathematically explained using the orbital elements, which describe the orbit of a satellite. These elements are

  • The semimajor axis a,
  • the eccentricity e. e=0 means that the orbit is circular, while e<1 means that the orbit is elliptical. For planetary satellites, we usually have e<0.05. With these two elements, we know the shape of the orbit. We now need to know its orientation, which is given by 3 angles:
  • the inclination i, with respect to a given reference plane. Usually it is the equatorial plane of the parent planet at a given date, and the inclination are often small,
  • the longitude of the ascending node Ω, which orientates the intersection of the orbital plane with the reference plane,
  • the longitude of the pericentre ϖ, which gives you the pericentre, i.e. the point at which the distance planet-satellite is the smallest. With these 5 elements, you know the orbit. To know where on its orbit the satellite is, you also need
  • the mean longitude λ.

Saying that the Satellites A and B are in a MMR means that there is an integer combination of orbital elements, such as φ=pλA-(p+q)λA+q1ϖA+q2ϖB+q3ΩA+q4ΩB, which is bounded. Usually an angle is expected to be able to take any real value between 0 and 2π radians, i.e. between 0 and 360°, but not our φ. The order of the resonance q is equal to q1+q2+q3+q4, and q3+q4 must be even. Moreover, it stems from the d’Alembert rule, which I will not detail here, that a strength can be associated with this resonance, which is proportional to eAq1eBq2iAq3iBq4. This quantity also gives us the orbital elements which would be raised by the resonance.

In other words, if the orbital frequency of A is twice the one of B, then we could have the following resonances:

  • λA-2λBA (order 1), which would force eA,
  • λA-2λBB (order 1), which would force eB,
  • A-4λBAB (order 2), which would force eA and eB,
  • A-4λB+2ΩA (order 2), which would force iA,
  • A-4λB+2ΩB (order 2), which would force iB,
  • A-4λB+2ΩAB (order 2), which would force iA and iB.

Higher-order resonances could be imagined, but let us forget them for today.

The next two figures give a good illustration of the way the resonances can raise the orbital elements. All of the curves represent possible trajectories, assuming that the energy of the system is constant. The orbital element which is affected by the resonance, can be measured from the distance from the origin. And we can see that the trajectories tend to focus around points which are not at the origin. These points are the centers of libration of the resonances. This means that when the system is at the exact resonance, the orbital element relevant to it will have the value suggested by the center of libration. These plots are derived from the Second Fundamental Model of the Resonance, elaborated at the University of Namur (Belgium) in the eighties.

The Second Fundamental Model of the Resonance for order 1 resonances, for different parameters. On the right, we can see banana-shaped trajectories, for which the system is resonant. The outer zone is the external circulation zone, and the inner one is the internal circulation zone. Inspired from Henrard J. & Lemaître A., 1983, A second fundamental model for resonance, Celestial Mechanics, 30, 197-218.
The Second Fundamental of the Resonance for order 2 resonances, for different parameters. We can see two resonant zones. On the right, an internal circulation zone is present. Inspired from Lemaître A., 1984, High-order resonances in the restricted three-body problem, Celestial Mechanics, 32, 109-126.

Here, I have only mentioned resonances involving two bodies. We can find in the Solar System resonances involving three bodies… see below.

It appears, from the observations of the satellites of the giant planets, that MMR are ubiquitous in our Solar System. This means that a mechanism drives the satellite from their initial position to the MMRs.

Driving the satellites into resonances

When the satellites are not in MMR, the argument φ circulates, i.e. it can take any value between 0 and 2π. Moreover, its evolution is monotonous, i.e. either constantly increasing, or constantly decreasing. However, when the system is resonant, then φ is bounded. It appears that the resonance zones are levels of minimal energy. This means that, for the system to evolve from a circulation to a libration (or resonant zone), it should loose some energy.

The main source of energy dissipation in a system of natural satellites is the tides. The planet and the satellites are not exactly rigid bodies, but can experience some viscoelastic deformation from the gravitational perturbation of the other body. This results in a tidal bulge, which is not exactly directed to the perturber, since there is a time lag between the action of the perturber and the response of the body. This time lag translates into a dissipation of energy, due to tides. A consequence is a secular variation of the semi-major axes of the satellites (contraction or dilatation of the orbits), which can then cross resonances, and eventually get trapped. Another consequence is the heating of a satellite, which can yield the creation of a subsurface ocean, volcanism…

Capture into a resonance is actually a probabilistic process. If you cross a resonance without being trapped, then your trajectories jump from a circulation zone to another one. However, if you are trapped, you arrive in a libration zone, and the energy dissipation can make you spiral to the libration center, forcing the eccentricity and / or inclination. It can also be shown that a resonance trapping can occur only if the orbits of the two satellites converge.

The system of Jupiter

Jupiter has 4 large satellites orbiting around: J1 Io, J2 Europa, J3 Ganymede, and J4 Callisto. There are denoted Galilean satellites, since they were discovered by Galileo Galilei in 1610. The observations of their motion has shown that

  • Io and Europa are close to the 2:1 MMR,
  • Europa and Ganymede are close to the 2:1 MMR as well,
  • Ganymede and Callisto are close to the 7:3 MMR (De Haerdtl inequality)
  • Io, Europa and Ganymede are locked into the Laplace resonance. This is a 3-body MMR, which resonant argument is φ=λ1-3λ2+2λ3. It librates around π with an amplitude of 0.5°.

This Laplace resonance is a unique case in the Solar System, to the best of our current knowledge. It is favored by the masses of the satellites, which have pretty the same order of magnitude. Moreover, Io shows signs of intense dissipation, i.e. volcanism, which were predicted by Stanton Peale in 1979, before the arrival of Voyager I in the vicinity of Jupiter, from the calculation of the tidal effects.

The system of Saturn

Besides the well-known rings and a collection of small moons, Saturn has 8 major satellites, i.e.

  • S1 Mimas,
  • S2 Enceladus,
  • S3 Tethys,
  • S4 Dione,
  • S5 Rhea,
  • S6 Titan,
  • S7 Hyperion,
  • S8 Iapetus,

and resonant relations, see the following table.

Satellite 1 Satellite 2 MMR Argument φ Libration center Libration amplitude Affected quantities
S1 Mimas S3 Tethys 4:2 1-4λ313 0 95° i1,i3
S2 Enceladus S4 Dione 2:1 λ2-2λ42 0 0.25° e2
S6 Titan S7 Hyperion 4:3 6-4λ77 π 36° e7

The amplitude of the libration tells us something about the age of the resonance. Dissipation is expected to drive the system to the center of libration, where the libration amplitude is 0. However, when the system is trapped, the transition from circulation to libration of the resonant argument φ induces that the libration amplitude is close to π, i.e. 180°. So, the dissipation damps this amplitude, and the measured amplitude tells us where we are in this damping process.

This study

This study aims at reinvestigating the mean-motion resonances in the systems of Jupiter and Saturn in the light of a quantity, kcrit, which has been introduced in the context of exoplanetary systems by Goldreich & Schlichting (2014). This quantity is to be compared with a constant of the system, in the absence of dissipation, and the comparison will tell us whether an inner circulation zone appears or not. In that sense, this study gives an alternative formulation of the results given by the Second Fundamental Model of the Resonance. The conclusion is that the resonances should be classified into two groups. The first group contains Mimas-Tethys and Titan-Hyperion, which have large libration amplitudes, and for which the inner circulation zone exists (here presented as overstability). The other group contains the resonances with a small amplitude of libration, i.e. not only Enceladus-Dione, but also Io-Europa and Europa-Ganymede, seen as independent resonances.

A possible perspective

Io-Europa and Europa-Ganymede are not MMR, and they are not independent pairs. They actually constitute the Io-Europa-Ganymede resonance, which is much less documented than a 2-body resonance. An extensive study of such a resonance would undoubtedly be helpful.

Some links

  • The paper, i.e. Luan J. & Goldreich P., 2017, Classification of satellite resonances in the Solar System, The Astronomical Journal, 153:17.
  • The web page of Jing Luan at Berkeley.
  • The web page of Peter Goldreich at Princeton.
  • The Second Fundamental Model of the Resonance, for order 1 resonances and for higher orders.
  • A study made in Brazil by Nelson Callegary and Tadashi Yokoyama, on the same topic: Paper 1 Paper 2, also made available by the authors here and here, thanks to them for sharing!.

Hinting the interior of planetary satellites from energy dissipation

Hi there! Today I will present you a paper that has recently been accepted for publication in Celestial Mechanics and Dynamical Astronomy, entitled Constraints on dissipation in the deep interiors of Ganymede and Europa from tidal phase-lags. This study has been conducted in Germany, at the DLR, by Hauke Hussmann.

The idea is here to get some clues on the interior of the satellites of Jupiter Ganymede and Europa, from two different signatures of the tides raised by Jupiter.

The tidal Love numbers h2 and k2

I have recently presented the tidal Love number k2 in a post on Mercury. In a nutshell: it represents the amplitude of variation of the gravity field of the satellite, at the orbital frequency. Please note that contrary to Mercury, only the orbital frequency is to be considered in the periodic variations of the gravity field. The reason for that is in the rotational dynamics: the main satellites of Jupiter rotate synchronously, showing the same face to their planet like our Moon, while Mercury is in a 3:2 spin-orbit resonance.
The tidal Love number h2 represents the amplitude of the tidal deformation of the topography of the satellite. Something remarkable on these 2 numbers is that h2 is mostly sensitive to the surface, while k2 is the response of the whole body. The idea of this study is to compare the two numbers, to get clues on the interior.

The satellites of Jupiter

At this time, 67 natural satellites are known for Jupiter. They can be classified into 3 groups:

  • The inner satellites Metis, Adrastea, Amalthea and Thebe. These are small bodies, their mean radii being between 8 and 85 km. They orbit at less than 3 Jupiter radii.
  • The Galilean satellites Io, Europa, Ganymede and Callisto. These are pretty large bodies, which were discovered in 1610 by Galileo Galileo. They orbit between 6 and 25 Jupiter radii. They contain almost of the mass of the satellites of Jupiter, which make them particularly interesting. For instance, their large masses is responsible for an interesting 3-bodies mean-motion resonance involving Io, Europa, and Ganymede. Basically, Io makes 4 revolutions around Jupiter while Europa makes 2 and Ganymede exactly one. This configuration is known as Laplacian resonance. Moreover the sizes of the 4 Galilean satellites, combined with the tides raised by Jupiter, are also responsible for internal differentiation. In particular, these 4 bodies are all considered to harbor global internal fluid layers.
  • The irregular satellites. These are small bodies orbiting far much further from Jupiter. They are probably former asteroids which were trapped by the gravity field of Jupiter. Contrary to the two other groups, which have pretty circular and coplanar orbits, the irregular satellites can have highly eccentric and inclined orbits. Some of them are even retrograde.

The next space missions JUICE and Europa Multiple Flyby

Ganymede and Europa are the main targets of the next two missions to the system of Jupiter. These two missions are the ESA mission JUICE, and the NASA Europa Mission.

JUICE, for JUpiter ICy moons Explorer, is planned to be launched in 2022 and to orbit Jupiter in 2030. Then, it will make flybys of Europa and Callisto, before becoming a satellite of Ganymede. Ganymede is thus the main target. Among the 11 instruments constituting JUICE, let us focus on two of them: GALA and 3GM.

GALA, for GAnymede Laser Altimeter, will measure the topography of the planet, while 3GM, for Gravity and Geophysics of jupiter and the Galilean Moons, is the radioscience experiment. It will in particular measure the gravity field of the body. The connection with the study I am presenting you is that h2 is expected from GALA, while k2 is expected from 3GM. Another connection is that Hauke Hussmann is both the first author of this study, and the principal investigator of GALA.

The NASA Europa Mission, also known as Europa Multiple-Flyby Mission, and previously Europa Clipper, will obviously target Europa. It should be launched in the 2020’s, and the nominal mission plans to perform 45 flybys of Europa.

One of the motivations to explore these bodies is the search for extraterrestrial life. Europa and Ganymede are known to harbor a subsurface ocean, and we wonder whether these oceans contain the ingredients for bacteriological life. These two missions will give us more information on the interior, from gravity data, analysis of the topography, imagery of the surface, measurements of the magnetic field… bringing new constraints on the oceans, like their depths, density, or viscosity…

This study

The idea of these studies is to compare the Love number h2, from the topography, and k2, from the gravity field, to constrain the interior. For that, the authors have considered several models of interior of Europa and Ganymede, and simulated the resulting Love numbers.

These interior models have to be realistic, which means being consistent with our current knowledge of these bodies, i.e. their total mass and their shapes, and being physically relevant. This implies that their densities increase radially, from the surface to the center. So, the surface is assumed to be made of ice coating a water ocean. Below the ocean is another ice layer, which itself surrounds a denser core. The ocean tends to decouple the icy shell from the action of the interior.

The authors particularly focus on the phase difference between h2 and k2. Basically, the Love numbers are complex numbers, the imaginary part representing the dissipation, while the real part is related to a purely elastic tide. From their simulations, they show that these phase differences should be of several degrees. Their possible measurements should constrain the viscosity of the ice shell coating the core of Ganymede, and the temperature of the mantle of Europa.

Some perspectives

Of course, the most interesting perspective is the future measurements of these phase differences by JUICE and NASA Europa Mission. The information they will provide will be supplemented by better constraints on the gravity field, on the magnetic field, on the rotation…

The authors assumed the rotations of these satellites to be synchronous, as suggested by the theory. But features at the surface of Europa suggest that the rotation of its surface could be actually slightly super-synchronous. This is something that the dynamical theories still need to understand, but this would probably affect the tidal action of Jupiter on Europa.

 

Links