Tag Archives: numerical methods

Breaking an asteroid

Hi there! Asteroids, these small bodies in the Solar System, are fascinating by the diversity of their shapes. This is a consequence of their small sizes. Another consequence is their weakness, which itself helps to split some of them into different parts, sometimes creating binary objects, asteroids families… The study I present you today, Internal gravity, self-energy, and disruption of comets and asteroids, by Anthony R. Dobrovolskis and Donald G. Korycansky, proposes an accurate computation of the required energy to provoke this break-up, at any place of the asteroid, i.e. you are more efficient when you hit at a given location. This study has recently been accepted for publication in Icarus.

Shapes of asteroids

Please allow me, in this context, to call asteroid a comet, a comet being a small body, i.e. like an asteroid, but with a cometary activity. The important thing is that the involved bodies are small enough.

Beyond a given size, i.e. a diameter of ~400 km, a planetary body is roughly spheroidal, i.e. it is an ellipsoid with it two equatorial axes almost equal and the polar one smaller, because of its rotation. For a tidally despun body, like the Moon, or a satellite of a giant planet, the shape is more triaxial, since the tidal (gravitational) action of the parent planet tends to elongate the equatorial plane. The same phenomenon affects Mercury.

However, for smaller bodies, the self-gravitation is not strong enough to make the body look more or less like a sphere. As a consequence, you can have almost any shape, some bodies are bilobate, some are contact binaries, i.e. two bodies which permanently touch together, some others are rubble piles, i.e. are weak aggregates of rocks, with many voids.

These configurations make these bodies likely to undergo or have undergone break-up. This can be quantified by the required energy to extract some material from the asteroid.

The energies involved

For that, an energy budget must be performed. The relevant energies to consider are:

  • The impact disruption energy: the minimum kinetic energy of an impactor, to shatter the asteroid and remove at least half of its mass,
  • The shattering energy: the minimum energy needed to shatter the asteroid into many small pieces. It is part of the impact disruption energy. This energy is roughly proportional to the mass of the asteroid. It represents the cohesion between the adjacent pieces.
  • The binding energy: this energy binds the pieces constituting the asteroid. In other words, once you have broken an asteroid (don’t try this at home!), you have to make sure the pieces will not re-aggregate… because of the binding energy. For that, you have to bring enough energy to disperse the fragments.
  • The self-gravitational energy: due to the mutual gravitational interaction between the blocks constituting the asteroids. Bodies smaller than 1 km are strength-dominated, i.e. they exist thanks to the cohesion between the blocks, which is the shatter energy. However, larger bodies are gravity-dominated.
  • The kinetic energy of rotation: the spin of these bodies tends to enlarge the equatorial section. In that sense, it assists the break-up process.

This study addresses bodies, which are far enough from the Sun. This is the reason why I do not mention its influences, i.e. the tides and the thermic effects, which could be relevant for Near-Earth Objects. In particular, the YORP effect is responsible for the fission of some of them. I do not mention the orbital kinetic energy of the asteroid either. Actually the orbital motion is part of the input energy brought by an impact, since the relative velocity of the impactor with respect to the target is relevant in this calculation.

I now focus on the two cases studied by the authors to illustrate their theory: the asteroid Kleopatra and the comet 67P/Churyumov-Gerasimenko.

2 peculiar cases: Kleopatra and Churyumov-Gerasimenko

216 Kleopatra is a Main-Belt asteroid. Adaptive optics observations have shown that is is constituted of two masses bound by material, giving a ham-bone shaped. As such, it can be considered as a contact binary. It is probably a rubble pile. Interestingly, observations have also shown that Kleopatra has 2 small satellites, Alexhelios and Cleoselene, which were discovered in 2008.

Reconstruction of the shape of Kleopatra. © NASA
Reconstruction of the shape of Kleopatra. © NASA

However, 67P Churyumov-Gerasimenko is a Jupiter-family comet, i.e. its aphelion is close to the orbit of Jupiter, while its perihelion is close to the one of the Earth. It has an orbital period of 6.45 years, and was the target of the Rosetta mission, which consisted of an orbiter and a lander, Philae. Rosetta orbited Churyumov-Gerasimenko between 2014 and 2016. The shape of this comet is sometimes described as rubber ducky, with two dominant masses, a torso and a head, bound together by some material, i.e. a neck.

Churyumov-Gerasimenko seen by Rosetta. © ESA
Churyumov-Gerasimenko seen by Rosetta. © ESA
216 Kleopatra 67P/Churyumov-Gerasimenko
Semimajor axis 2.794 AU 3.465 AU
Eccentricity 0.251 0.641
Inclination 13.11° 7.04°
Spin period 5.385 h 12.761 h
Mean radius 62 km 2.2 km
Magnitude 7.30 11.30
Discovery 1880 1969

The irregular shapes of these two bodies make them interesting targets for a study addressing the gravitation of any object. Let us see now how the authors addressed the problem.

Numerical modeling

Several models exist in the literature to address the gravity field of planetary bodies. The first approximation is to consider them as spheres, then you can refine in seeing them as triaxial ellipsoids. For highly irregular bodies you can try to model them as cuboids, and then as polyhedrons. Another way is to see them as duplexes, this allows to consider the inhomogeneities dues to the two masses constituting bilobate objects. The existence of previous studies allow a validation of the model proposed by the authors.

And their model is a finite-element numerical modeling. The idea is to split the surface of the asteroid into small triangular planar facets, which should be very close to the actual surface. The model is all the more accurate with many small facets, but this has the drawback of a longer computation time. The facets delimit the volume over which the equations are integrated, these equations giving the local self-gravitational and the impact disruption energies. The authors also introduce the energy rebate, which is a residual energy, due to the fact that you can remove material without removing half of it. This means that the impact disruption energy, as it is defined in the literature, is probably a too strong condition to have extrusion of material.
The useful physical quantities, which are the gravitational potential, the attraction, and the surface slope, are propagated all along the body thanks to a numerical scheme, which accuracy is characterized by an order. This order quantifies the numerical approximation which is made at each integration step. A higher order is more accurate, but is computationally more expensive.

Once the code has been run on test cases, the authors applied it on Kleopatra and Churyumov-Gerasimenko, for which the shape is pretty well known. They used meshes of 4,094 and 5,786 faces, respectively.

Results

The validation phase is successful. The authors show that with a 3rd order numerical scheme, they recover the results present in the literature for the test cases with an accuracy of ~0.1%, which is much better than the accuracy of the shape models for the real asteroids. Regarding Kleopatra and Churyumov-Gerasimenko, they get the gravity field at any location, showing in particular excesses of gravity at the two lobes.

Such a study is particularly interesting for further missions, which would determine the gravity field of asteroids, which would then be compared with the theoretical determination by this code. Other applications are envisaged, the authors mentioning asteroid mining.

The study and its authors

And that’s it for today! Please do not forget to comment. You can also subscribe to the RSS feed, and follow me on Twitter and Facebook.

And Merry Christmas!

Resurfacing Ganymede

Hi there! After Europa last week, I tell you today on the next Galilean satellite, which is Ganymede. It is the largest planetary satellite in the Solar System, and it presents an interesting surface, i.e. with different terrains showing evidence of past activity. This is the opportunity for me to present you Viscous relaxation as a prerequisite for tectonic resurfacing on Ganymede: Insights from numerical models of lithospheric extension, by Michael T. Bland and William B. McKinnon. This study has recently been accepted for publication in Icarus.

The satellite Ganymede

Ganymede is the third, by its distance to the planet, of the 4 Galilean satellites of Jupiter. It was discovered with the 3 other ones in January 1610 by Galileo Galilei. These are indeed large bodies, which means that they could host planetary activity. Io is known for its volcanoes, and Europa and Ganymede (maybe Callisto as well) are thought to harbour a global, subsurfacic ocean. The table below lists their size and orbital properties, which you can compare with the 5th satellite, Amalthea.

Semimajor axis Eccentricity Inclination Radius
J-1 Io 5.90 Rj 0.0041 0.036° 1821.6 km
J-2 Europa 9.39 Rj 0.0094 0.466° 1560.8 km
J-3 Ganymede 14.97 Rj 0.0013 0.177° 2631.2 km
J-4 Callisto 26.33 Rj 0.0074 0.192° 2410.3 km
J-5 Amalthea 2.54 Rj 0.0032 0.380° 83.45 km

We have images of the surface of Ganymede thanks to the spacecraft Voyager 1 & 2, and Galileo. These missions have revealed different types of terrains, darker and bright, some impacted, some pretty smooth, some showing grooves… “pretty smooth” should be taken with care, since the feeling of smoothness depends on the resolution of the images, which itself depends on the distance between the spacecraft and the surface, when this specific surface element was directed to the spacecraft.

Dark terrain in Galileo Regio. © NASA
Dark terrain in Galileo Regio. © NASA
Bright terrain with grooves and a crater. © NASA
Bright terrain with grooves and a crater. © NASA

A good way to date a terrain is to count the craters. It appears that the dark terrains are probably older than the bright ones, which means that a process renewed the surface. The question this paper addresses is: which one(s)?

Marius Regio and Nippur Sulcus. © NASA
Marius Regio and Nippur Sulcus. © NASA

Resurfacing a terrain

These four mechanisms permit to renew a terrain from inside:

  • Band formation: The lithosphere, i.e. the surface, is fractured, and material from inside takes its place. This phenomenon is widely present on Europa, and probably exists on Ganymede.
  • Viscoelastic relaxation: When the crust has some elasticity, it naturally smooths. As a consequence, craters tend to disappear. Of course, this phenomenon is a long-term process. It requires the material to be hot enough.
  • Cryovolcanism: It is like volcanism, but with the difference that the ejected material is mainly composed of water, instead of molten rock. Part of the ejected material falls on the surface.
  • Tectonics: Extensional of compressional deformations of the lithosphere. This is the phenomenon, which is studied here.

Beside these processes, I did not mention the impacts on the surface, and the erosion, which is expected to be negligible on Ganymede.

The question the authors addressed is: could tectonic resurfacing be responsible for some of the actually observed terrains on Ganymede?

Numerical simulations

To answer this question, the authors used the numerical tool, more precisely the 2-D code Tekton. 2-D means that the deformations below the surface are not explicitly simulated. Tekton is a viscoelastic-plastic finite element code, which means that the surface is divided into small areas (finite elements), and their locations are simulated with respect to the time, under the influence of a deforming cause, here an extensional deformation.

The authors used two kinds of data, that we would call initial conditions for numerical simulations: simulated terrains, and real ones.
The simulated terrains are fictitious topographies, varying by the amplitude and frequency of deformation. The deformations are seen as waves, the wavelength being the distance between two peaks. A smooth terrain can be described by long-wavelength topography, while a rough one will have short wavelength.
The real terrains are Digital Terrain Models, extracted from spacecraft data.

The authors also considered different properties of the material, like the elasticity, or the cohesion.

A new scenario of resurfacing

It results from the simulations that the authors can reproduce smooth terrains with grooves, starting from already smooth terrains without grooves. However, extensional tectonics alone cannot remove the craters. In other words, if you can identify craters at the surface of Ganymede, after millions of years of extensional tectonics you will still observe them. To make smooth terrains, you need the assistance of another process, the viscoelastic relaxation of the lithosphere being an interesting candidate.

This pushed the authors to elaborate a new scenario of resurfacing of Ganymede, involving different processes.
They consider that the dark terrains are actually the eldest ones, having remaining intact. However, there was indeed tectonic resurfacism of the bright terrains, which formed grooved. But the deformation of the lithosphere was accompanied by an elevation of the temperature (which is not simulated by Tekton), which itself made the terrain more elastic. This elasticity itself relaxed the craters.

Anyway, you need elasticity (viscoelasticity is actually more accurate, since you have energy dissipation), and for that you need an elevation of the local temperature. This may have been assisted by heating due to internal processes.

In the future

Ganymede is the main target of the ESA mission JUICE, which should orbit it 2030. We expect a big step in our knowledge of Ganymede. For this specific problem, we will have a much better resolution of the whole surface, the gravity field of the body (which is related to the interior), maybe a magnetic field, which would constrain the subsurface ocean and the depth of the crust enshrouding it, and the Love number, which indicates the deformation of the gravity field by the tidal excitation of Jupiter. This last quantity contains information on the interior, but it is related to the whole body, not specifically to the structure. I doubt that we would have an accurate knowledge of the viscoelasticity of the crust. Moreover, the material properties which created the current terrains may be not the current ones; in particular the temperature of Ganymede is likely to have varied over the ages. We know for example that this temperature is partly due to the decay of radiogenic elements shortly after the formation of the satellite. During this heating, the satellite stratifies, which alters the tidal response to the gravitational excitation of Jupiter, and which itself heats the satellite. This tidal response is also affected by the obliquity of Ganymede, by its eccentricity, which is now damped… So, the temperature is neither constant, nor homogeneous. There will still be room for theoretical studies and new models.

The study and its authors

And that’s it for today! Please do not forget to comment. You can also subscribe to the RSS feed, and follow me on Twitter and Facebook.

Plate tectonics on Europa?

Hi there! Jupiter has 4 large satellites, known as Galilean satellites since they were discovered by Galileo Galilei in 1610. Among them is Europa, which ocean is a priority target for the search for extraterrestrial life. Many clues have given us the certainty that this satellite has a global ocean under its icy surface, and it should be the target of a future NASA mission, Europa Clipper. Meanwhile it will also be visited by the European mission JUICE, before orbital insertion around Ganymede. Since Europa presents evidences of tectonic activity, the study I present you today, i.e. Porosity and salt content determine if subduction can occur in Europa’s ice shell, by Brandon Johnson et al., wonders whether subduction is possible when two plates meet. This study has been conducted at Brown University, Providence, RI (USA).

Subduction on Earth

I guess you know about place tectonics on Earth. The crust of the Earth is made of several blocks, which drift. As a consequence, they collide, and this may be responsible for the creation of mountains, for earthquakes… Subduction is a peculiar kind of collision, in which one plate goes under the one it meets, just because their densities are significantly different. The lighter plate goes up, while the heavier one goes down. This is what happens on the west coast of South America, where the subduction of the oceanic Nazca Plate and the Antarctic Plate have created the Andean mountains on the South America plate, which is a continental one.

Even if our Earth is unique in the Solar System by many aspects, it is highly tempting to use our knowledge of it to try to understand the other bodies. This is why the authors simulated the conditions favorable to subduction on Europa.

The satellite Europa

Europa is the smallest of the four Galilean satellites of Jupiter. It orbits Jupiter in 3.55 days at a mean distance of 670,000 km, on an almost circular and planar orbit. It has been visited by the spacecraft Pioneer 10 & 11 in 1973-1974, then by Voyager 1 & 2 in 1979. But our knowledge of Europa is mostly due to the spacecraft Galileo, which orbited Jupiter between 1995 and 2003. It revealed long, linear cracks and ridges, interrupted by disrupted terrains. The presence of these structures indicates a weakness of the surface, and argues for the presence of a subsurface ocean below the icy crust. Another argument is the tidal heating of Jupiter, which means that Europa should be hot enough to sustain this ocean.
This active surface shows extensional tectonic feature, which suggests plate motion, and raises the question: is subduction possible?

Numerical simulations of the phenomenon

To determine whether subduction is possible, the authors performed one-dimensional finite-elements simulations of the evolution of a subducted slab, to determine whether it would remain below another plate or not. The equation is: would the ocean be buoyant? If yes, then the slab cannot subduct, because it would be too light for that.

The author considered the time and spatial evolution of the slab, i.e. over its length and over the ages. They tested the effect of

  1. The porosity: Planetary ices are porous material, but we do not know to what extent. In particular, at some depth the material is more compressed, i.e. less porous than at the surface, but it is not easy to put numbers behind this phenomenon. Which means that the porosity is a parameter. The porosity is defined as a fraction of the volume of voids over the total volume investigated. Here, total volume should not be understood as the total volume of Europa, but as a volume of material enshrouding the material element you consider. This allows you to define a local porosity, which thus varies in Europa. Only the porosity of the icy crust is addressed here.
  2. The salt content: the subsurface ocean and the icy crust are not pure ice, but are salty, which affects their densities. The authors assumed that the salt of Europa is mostly natron, which is a mixture essentially made of sodium carbonate decahydrate and sodium bicarbonate. Importantly, the icy shell has probably some lateral density variations, i.e. the fraction of salt is probably not homogeneous, which gives room for local phenomenons.
  3. The crust thickness: barely constrained, it could be larger than 100 km.
  4. The viscosity: how does the material react to a subducting slab? This behavior depends on the temperature, which is modeled here with the Fourier law of heat,
  5. The spreading rate, i.e. the velocity of the phenomenon,
  6. The geometry of the slab, in particular the bending radius, and the dip angle.

And once you have modeled and simulated all this, the computer tells you under which conditions subduction is possible.

Yes, it is possible

The first result is that the two critical parameters are the porosity and the salt content, which means that the conditions for subduction can be expressed with respect to these two quantities.
Regarding the conditions for subduction, let me quote the abstract of the paper: If salt contents are laterally homogeneous, and Europa has a reasonable surface porosity of 0.1, the conductive portion of Europa’s shell must have salt contents exceeding ~22% for subduction to occur. However, if salt contents are laterally heterogeneous, with salt contents varying by a few percent, subduction may occur for a surface porosity of 0.1 and overall salt contents of ~5%.

A possible subduction does not mean that subduction happens. For that, you need a cause, which would trigger activity in the satellite.

Triggering the subduction

The authors propose the following two causes for subduction to happen:

  1. Tidal interaction with Jupiter, enhanced by non-synchronous rotation: Surface features revealed by Galileo are consistent with a crust which would not rotate synchronously, as expected for the natural satellites, but slightly faster, the departure from supersynchronicity inducing a full rotation with respect to the Jupiter-Europa direction between 12,000 and 250,000 years… to be compared with an orbital period of 3.55 days. So, this is a very small departure, which would enhance the tidal torque of Jupiter, and trigger some activity. This interpretation of the surface features as a super-synchronous rotation is controversial.
  2. Convection, i.e. fluid motion in the ocean, due to the variations of temperature.

No doubt Europa Clipper and maybe JUICE will tell us more!

The study and its authors

And that’s it for today! Please do not forget to comment. You can also subscribe to the RSS feed, and follow me on Twitter and Facebook.

Triton: a cuckoo around Neptune

Hi there! Did you know that Neptune had a prominent satellite, i.e. Triton, on a retrograde orbit? This is so unusual that it is thought to have been trapped, i.e. was originally an asteroid, and has not been formed in the protoneptunian nebula. The study I present you today, Triton’s evolution with a primordial Neptunian satellite system, by Raluca Rufu and Robin M. Canup, explains how Triton ejected the primordial satellites of Neptune. This study has recently been published in The Astronomical Journal.

The satellites of Uranus and Neptune

We are tempted to see the two planets Uranus and Neptune as kinds of twins. They are pretty similar in size, are the two outermost known planets in the Solar System, and are gaseous. A favorable orbital configuration made their visitation possible by the spacecraft Voyager 2 in 1986 and 1989, respectively.

Among their differences are the high obliquity of Uranus, the presence of rings around Uranus while Neptune displays arcs, and different configurations in their system of satellites. See for Uranus:

Semimajor axis Eccentricity Inclination Radius
Miranda 5.12 Ru 0.001 4.338° 235.8 km
Ariel 7.53 Ru 0.001 0.041° 578.9 km
Umbriel 10.49 Ru 0.004 0.128° 584.7 km
Titania 17.20 Ru 0.001 0.079° 788.9 km
Oberon 23.01 Ru 0.001 0.068° 761.4 km
Puck 3.39 Ru 0 0.319° 81 km
Sycorax 480.22 Ru 0.522 159.420° 75 km

I show on this table the main satellites of Uranus, and we can see that the major ones are at a reasonable distance (in Uranian radius Ru) of the planet, and orbit almost in the same plane. The orbit of Miranda is tilted thanks to a past mean-motion resonance with Umbriel, which means that it was originally in the same plane. So, we can infer that these satellites were formed classically, i.e. the same way as the satellites of Jupiter, from a protoplanetary nebula, in which the planet and the satellites accreted. An exception is Sycorax, which is very far, highly inclined, and highly eccentric. As an irregular satellite, it has probably been formed somewhere else, as an asteroid, and been trapped by the gravitational attraction of Uranus.

Now let us have a look at the system of Neptune:

Semimajor axis Eccentricity Inclination Radius
Triton 14.41 Rn 0 156.865° 1353.4 km
Nereid 223.94 Rn 0.751 7.090° 170 km
Proteus 4.78 Rn 0 0.075° 210 km
Larissa 2.99 Rn 0.001 0.205° 97 km

Yes, the main satellite seems to be an irregular one! It does not orbit that far, its orbit is (almost) circular, but its inclination is definitely inconsistent with an in situ formation, i.e. it has been trapped, which has been confirmed by several studies. Nereid is much further, but with a so eccentric orbit that it regularly enters the zone, which is dynamically perturbed by Triton. You can also notice the absence of known satellites between 4.78 and 14.41 Neptunian radii. This suggests that this zone may have been cleared by the gravitational perturbation of a massive body… which is Triton. The study I present you simulates what could have happened.

A focus on Triton

Before that, let us look at Triton. The system of Neptune has been visited by the spacecraft Voyager 2 in August 1989, which mapped 40% of the surface of Triton. Surprisingly, it showed a limited number of impact craters, which means that the surface has been renewed, maybe some 1 hundred of millions of years ago. Renewing the surface requires an activity, probably cryovolcanism as on the satellite of Saturn Enceladus, which should has been sustained by heating. Triton was on the action of the tides raised by Neptune, but probably not only, since tides are not considered as efficient enough to have circularized the orbit. The tides have probably been supplemented by gravitational interactions with the primordial system of Neptune, i.e. satellites and / or disk debris. If there had been collisions, then they would have themselves triggered heating. As a consequence of this heating, we can expect a differentiated structure.

Moreover, Triton orbits around Neptune in 5.877 days, on a retrograde orbit, while the rotation of Neptune is prograde. This configuration, associated with the tidal interaction between Triton and Neptune, makes Triton spiral very slowly inward. In other words, it will one day be so close to Neptune that it will be destroyed, and probably create a ring. But we will not witness it.

A numerical study with SyMBA

This study is essentially numerical. It aimed at modeling the orbital evolution of Triton, in the presence of Nereid and the putative primordial satellites of Neptune. The authors assumed that there were 4 primordial satellites, with different initial conditions, and considered 3 total masses for them: 0.3, 1, and 3 total masses of the satellites of Uranus. For each of these 3 masses, they ran 200 numerical simulations.

The simulations were conducted with the integrator (numerical code) SyMBA, i.e. Symplectic Massive Body Algorithm. The word symplectic refers to a mathematical property of the equations as they are written, which guarantee a robustness of the results over very long timescales, i.e. there may be an error, but which does not diverge. It may be not convenient if you make short-term accurate simulations, for instance if you want to design the trajectory of a spacecraft, but it is the right tool for simulating a system over hundreds of Myrs (millions of years). This code also handles close encounters, but not the consequences of impacts. The authors bypassed this problem in treating the impacts separately, determining if there were disrupting, and in that case estimated the timescales of reaccretion.

Results

The authors found, consistently with previous studies, that the interaction between Triton and the primordial system could explain its presently circular orbit, i.e. it damped the eccentricity more efficiently than the tides. Moreover, the interaction with Triton caused collisions between the primordial moons, but usually without disruption (hit-and-run impacts). In case of disruption, the authors argue that the reaccretion would be fast with respect of the time evolution of the orbit of Triton, which means that we could lay aside the existence of a debris disk.

Moreover, they found that the total mass of the primordial system had a critical role: for the heaviest one, i.e. 3 masses of the Uranian system, Triton had only small chances to survive, while it had reasonable chances in the other two cases.

Something frustrating when you try to simulate something that happened a few hundreds of Myrs ago is that you can at the best be probabilistic. The study shows that a light primordial system is likelier to have existed than a heavy one, but there are simulations with a heavy system, in which Triton survives. So, a heavy system is not prohibited.

The study and its authors

  • The study, which is available as free article. The authors probably paid extra fees for that, many thanks to them! You can also look at it on arXiv.
  • A conference paper on the same study,
  • The ResearchGate profile of Raluca Rufu,
  • The Homepage of Robin M. Canup.

Before closing this post, I need to mention that the title has been borrowed from Matija Ćuk (SETI, Mountain View, CA), who works on this problem as well (see these two conference abstracts here and here).

That’s it for today! Please do not forget to comment. You can also subscribe to the RSS feed, and follow me on Twitter and Facebook.

Rotation and activity of a comet

Hi there! We, Earthians, are regularly visited by periodic comets, the most famous one being probably 1P/Halley, which will visit us in 2061. Since we cannot wait, we study others of that kind. Today I tell you about 49P / Arend-Rigaux. This is the opportunity for me to present you The rotation and other properties of Comet 49P/Arend-Rigaux, 1984 – 2012, by Nora Eisner, Matthew M. Knight and David G. Schleicher. This study has recently been published in The Astronomical Journal.

The comet 49P / Arend-Rigaux

The comet 49P / Arend-Rigaux has been discovered in February 1951 at the Royal Observatory of Belgium, by Sylvain Arend and Fernand Rigaux. It is a periodic comet of the Jupiter family, i.e. with a period smaller than 20 years. Its period is actually 6.71 years, its semimajor axis 3.55 AU (astronomical units, 1 AU being 150 millions km, i.e. the Sun-Earth distance), its eccentricity 0.6, and its orbital inclination 19°, with respect to the ecliptic. These numbers are extracted from the JPL Small-Body Database Browser, and are calculated at the date Apr 6, 2010. I have plotted below the distances Sun-comet and Earth-comet.

Distance to the Sun.
Distance to the Sun.
Distance to the Earth.
Distance to the Earth.

The distance to the Sun clearly shows the periodic variations. The orbit of the Earth is at 1 AU, the one of Mars at 1.5 AU, and the one of Jupiter at 5.2 AU. Every 6.71 years, the comet reaches its perihelion, i.e. minimizes its distance to the Sun. This proximity warms the comet and provokes an excess of cometary activity, i.e. sublimation of dirty ice. At these occasions, the distance with the Earth is minimized, but with variations due to the orbital motion of the Earth. We can see for instance that the comet gets pretty close to the Earth in 1951 (when it was discovered), in 1984, and in early 2032. These are favorable moments to observe it. The paper I present you today is mainly (but not only) based on photometric observations made between January and May 2012, at Lowell Observatory.

Observations at Lowell Observatory

Lowell Observatory is located close to Flagstaff, AZ (USA). It was founded by the famous Percival Lowell in 1894, and is the place where Clyde Tombaugh discovered Pluto, in 1930. Among its facilities is the 4.28 m Discovery Channel Telescope, but most of the data used in this study were acquired with the 1.1 m Hall telescope, which is devoted to the study of comets, asteroids, and Sun-like stars. The authors also used a 79 cm telescope. The observations were made in the R(ed) band.

The data

Besides these 33 observation nights during the first half of 2012, the authors used data acquired close to the 1984 and 2005 perihelion passages, even if the 2005 ones revealed unusable. The observations consists to measure the magnitude (somehow, the luminosity) of the comet, in correcting for atmospheric problems, so as to be able to detect the variations of this magnitude. You can find below an example of data:

Magnitude of 49P / Arend-Rigaux measured in April 2012.
Magnitude of 49P / Arend-Rigaux measured in April 2012.

Of course, the data have holes, since you cannot observe during the day. Moreover, the comet needs to be visible from Arizona, otherwise it was just impossible to observe it and make any measurements.

We can see a kind of periodicity in the magnitude, this is a signature of the rotation of the comet.

Measuring the rotation

Most of the planetary bodies are kinds of triaxial ellipsoids. Imagine we are in the equatorial plane of one of them. We see an alternation of the long and short axes of its equatorial section. If the albedo of the surface element we face depends mainly on its curvature (it depends on it, but mainly may be an overstatement), then we should see two peaks during a period. As a consequence, the period of the lightcurve we observe should be half the rotation period of the comet.

In combining all the measurements, the authors managed to derive a rotation period of 13.45 ± 0.01 hour. For that, they used two different algorithms, which gave very close results, giving the authors confidence in their conclusions. The first one, Phase Dispersion Minimization (PDM), consists to assume a given period, split the measurements into time intervals of this period, and overlap them. The resulting period gives to the best overlap. The other algorithm is named Lomb-Scargle, following its authors. It is a kind of Discrete Fourier Transform, but with the advantage of not requiring uniformly sampled data.

In addition to this rotation period, the authors detected an increasing trend in the 2012 data, as if the spin of the comet accelerated. This is in agreement with an alteration of the measured rotation from the Earth, which moves, and reveals a retrograde rotation, i.e. an obliquity close to 180°. In other words, this is an illusion due to the motion of the observer, but this illusion reveals the obliquity.

Moreover, in comparing the 2012 data with the ones of 1984, the authors managed to detect a variation in the rotation period, not larger than 54 seconds. This is possible regarding the fact that the comet is altered by each perihelion passage, since it outgasses. In this case, that would imply a change of at the most 14 seconds of the rotation period between two passages. Such variations have also been detected for at least 4 other comets (2P/Encke, 9P/Tempel 1, 10P/Tempel 2, and 103P/Hartley 2, see Samarinha and Mueller (2013)).

Comet Period (h) Variation (s)
2P/Encke 11 240
9P/Tempel 1 41 -840
10P/Tempel 2 9 16.2
103P/Hartley 2 18 7200
49P/Arend-Rigaux 13.45 -(>14)

Finally, since the lightcurve is a signature of the shape as well, the authors deduced from the amplitude of variation that the axial ratio of the nucleus, i.e. long axis / short axis, should be between 1.38 and 1.63, while an independent, previous study found 1.6.

Cometary activity

49P / Arend-Rigaux has a low activity. Anyway, the authors detected an event of impulse-type outburst, which lasted less than 2 hours. The analysis of the coma revealed an excess of cyanides with respect to the 1984 passage. Moreover, 49P / Arend-Rigaux is the first comet to show hydroxyde.

The study and its authors

That’s it for today! Please do not forget to comment. You can also subscribe to the RSS feed, and follow me on Twitter and Facebook.