Tag Archives: Observations

Rotation and activity of a comet

Hi there! We, Earthians, are regularly visited by periodic comets, the most famous one being probably 1P/Halley, which will visit us in 2061. Since we cannot wait, we study others of that kind. Today I tell you about 49P / Arend-Rigaux. This is the opportunity for me to present you The rotation and other properties of Comet 49P/Arend-Rigaux, 1984 – 2012, by Nora Eisner, Matthew M. Knight and David G. Schleicher. This study has recently been published in The Astronomical Journal.

The comet 49P / Arend-Rigaux

The comet 49P / Arend-Rigaux has been discovered in February 1951 at the Royal Observatory of Belgium, by Sylvain Arend and Fernand Rigaux. It is a periodic comet of the Jupiter family, i.e. with a period smaller than 20 years. Its period is actually 6.71 years, its semimajor axis 3.55 AU (astronomical units, 1 AU being 150 millions km, i.e. the Sun-Earth distance), its eccentricity 0.6, and its orbital inclination 19°, with respect to the ecliptic. These numbers are extracted from the JPL Small-Body Database Browser, and are calculated at the date Apr 6, 2010. I have plotted below the distances Sun-comet and Earth-comet.

Distance to the Sun.
Distance to the Sun.
Distance to the Earth.
Distance to the Earth.

The distance to the Sun clearly shows the periodic variations. The orbit of the Earth is at 1 AU, the one of Mars at 1.5 AU, and the one of Jupiter at 5.2 AU. Every 6.71 years, the comet reaches its perihelion, i.e. minimizes its distance to the Sun. This proximity warms the comet and provokes an excess of cometary activity, i.e. sublimation of dirty ice. At these occasions, the distance with the Earth is minimized, but with variations due to the orbital motion of the Earth. We can see for instance that the comet gets pretty close to the Earth in 1951 (when it was discovered), in 1984, and in early 2032. These are favorable moments to observe it. The paper I present you today is mainly (but not only) based on photometric observations made between January and May 2012, at Lowell Observatory.

Observations at Lowell Observatory

Lowell Observatory is located close to Flagstaff, AZ (USA). It was founded by the famous Percival Lowell in 1894, and is the place where Clyde Tombaugh discovered Pluto, in 1930. Among its facilities is the 4.28 m Discovery Channel Telescope, but most of the data used in this study were acquired with the 1.1 m Hall telescope, which is devoted to the study of comets, asteroids, and Sun-like stars. The authors also used a 79 cm telescope. The observations were made in the R(ed) band.

The data

Besides these 33 observation nights during the first half of 2012, the authors used data acquired close to the 1984 and 2005 perihelion passages, even if the 2005 ones revealed unusable. The observations consists to measure the magnitude (somehow, the luminosity) of the comet, in correcting for atmospheric problems, so as to be able to detect the variations of this magnitude. You can find below an example of data:

Magnitude of 49P / Arend-Rigaux measured in April 2012.
Magnitude of 49P / Arend-Rigaux measured in April 2012.

Of course, the data have holes, since you cannot observe during the day. Moreover, the comet needs to be visible from Arizona, otherwise it was just impossible to observe it and make any measurements.

We can see a kind of periodicity in the magnitude, this is a signature of the rotation of the comet.

Measuring the rotation

Most of the planetary bodies are kinds of triaxial ellipsoids. Imagine we are in the equatorial plane of one of them. We see an alternation of the long and short axes of its equatorial section. If the albedo of the surface element we face depends mainly on its curvature (it depends on it, but mainly may be an overstatement), then we should see two peaks during a period. As a consequence, the period of the lightcurve we observe should be half the rotation period of the comet.

In combining all the measurements, the authors managed to derive a rotation period of 13.45 ± 0.01 hour. For that, they used two different algorithms, which gave very close results, giving the authors confidence in their conclusions. The first one, Phase Dispersion Minimization (PDM), consists to assume a given period, split the measurements into time intervals of this period, and overlap them. The resulting period gives to the best overlap. The other algorithm is named Lomb-Scargle, following its authors. It is a kind of Discrete Fourier Transform, but with the advantage of not requiring uniformly sampled data.

In addition to this rotation period, the authors detected an increasing trend in the 2012 data, as if the spin of the comet accelerated. This is in agreement with an alteration of the measured rotation from the Earth, which moves, and reveals a retrograde rotation, i.e. an obliquity close to 180°. In other words, this is an illusion due to the motion of the observer, but this illusion reveals the obliquity.

Moreover, in comparing the 2012 data with the ones of 1984, the authors managed to detect a variation in the rotation period, not larger than 54 seconds. This is possible regarding the fact that the comet is altered by each perihelion passage, since it outgasses. In this case, that would imply a change of at the most 14 seconds of the rotation period between two passages. Such variations have also been detected for at least 4 other comets (2P/Encke, 9P/Tempel 1, 10P/Tempel 2, and 103P/Hartley 2, see Samarinha and Mueller (2013)).

Comet Period (h) Variation (s)
2P/Encke 11 240
9P/Tempel 1 41 -840
10P/Tempel 2 9 16.2
103P/Hartley 2 18 7200
49P/Arend-Rigaux 13.45 -(>14)

Finally, since the lightcurve is a signature of the shape as well, the authors deduced from the amplitude of variation that the axial ratio of the nucleus, i.e. long axis / short axis, should be between 1.38 and 1.63, while an independent, previous study found 1.6.

Cometary activity

49P / Arend-Rigaux has a low activity. Anyway, the authors detected an event of impulse-type outburst, which lasted less than 2 hours. The analysis of the coma revealed an excess of cyanides with respect to the 1984 passage. Moreover, 49P / Arend-Rigaux is the first comet to show hydroxyde.

The study and its authors

That’s it for today! Please do not forget to comment. You can also subscribe to the RSS feed, and follow me on Twitter and Facebook.

An interstellar asteroid

Hi there! You may have heard this week of our Solar System visited by an asteroid probably formed in another planetary system. This is why I have decided to speak about it, so this article will not be based on a peer-reviewed scientific publication, but on good science anyway. The name of this visitor is for now A/2017 U1.

History of the discovery

Discovering a new object usually consists in

  1. Taking a picture of a part of a sky. Usually these are parts of the order of the degree, maybe much less… so, small parts. And this also requires to treat the image, to correct for atmospheric (brightness of the sky, wind,…) and instrumental (dead pixels…) effects,
  2. Comparing in with the objects, which are known to be in that field.

If there is an unexpected object, then it could be a discovery. Here is the history of the discovery of A/2017 U1:

  • Oct. 19, 2017: Robert Weryk, a researcher of the University of Hawaii, discovers a new object while searching for Near-Earth Asteroids with the Pan-STARRS 1 telescope. An examination of images archives revealed that the object had already been photographed the day before.
  • Oct. 25, 2017: The Minor Planet Center (Circular MPEC 2017-U181) gives orbital elements for this new object, from 34 observations over 6 days, from Oct. 18 to 24. Surprisingly, an eccentricity bigger than 1 (1.1897018) is announced, which means that the trajectory follows a hyperbola. This means that if this object would be affected only by the Sun, then it would come from an infinite distance, and would leave us for infinity. In other words, this object would not be fated to remain in our Solar System. That day, the object was thought to be a comet, and named C/2017 U1. 10 observation sites were involved (once an object has been detected and located, it is easier to re-observe it, even with a smaller telescope).
  • Oct. 26, 2017: Update by the Minor Planet Center (Circular MPEC 2017-U185), using 47 observations from Oct. 14 on. The object is renamed A/2017 U1, i.e. from comet “C” to asteroid “A”, since no cometary activity has been detected. Same day: the press release announcing the first confirmed discovery of an interstellar object. New estimation of the eccentricity: e = 1.1937160.
  • Oct. 27, 2017: Update by the Minor Planet Center (Circular MPEC 2017-U234), using 68 observations. New estimation of the eccentricity: e = 1.1978499.

And this is our object! It has an absolute magnitude of 22.2 and a diameter probably smaller than 400 meters. These days, spectroscopic observations have revealed a red object, alike the KBOs (Kuiper Belt Objects). It approached our Earth as close as 15 millions km (0.1 astronomical unit), i.e. one tenth of the Sun-Earth distance.

The trajectory of A/2017 U1.
The trajectory of A/2017 U1.

What are these objects?

The existence of such objects is predicted since more than 40 years, in particular by Fred Whipple and Viktor Safronov. This is how they come to us:

  1. A protoplanetary disk creates a star, planets, and small objects,
  2. The small objects are very sensitive to the gravitational perturbations of the planets. As a consequence, they may be ejected from their planetary system, and become interstellar objects,
  3. They visit us.

Calculations indicate that A/2017 U1 comes roughly from the constellation Lyra, in which the star Vega is (only…) at 25 lightyears from our Sun. It is tempting to assume that A/2017 U1 was formed around Vega, but that would be only speculation, since many perturbations could have altered its trajectory. Several studies will undoubtedly address this problem within next year.

Maybe not the first one

Here we have an eccentricity, which is significantly larger (some 20%) than 1. Moreover, our object has a very inclined orbit, which means that we can neglect the perturbations of its orbit by the giant planets. In other words, it entered the Solar System on the trajectory we see now. But a Solar System object can get a hyperbolic orbit, and eventually be ejected. This means that when we detect an object with a very high eccentricity, like a long-period comet, it does not necessary mean that it is an interstellar object. In the past, some known objects have been proposed to be possible interstellar ones. This is for example the case for the comet C/2007 W1 (Boattini), which eccentricity is estimated to be 1.000191841611794±0.000041198 at the date May 26, 2008. It could be an IC (Interstellar Comet), but could also be an Oort cloud object, put on a hyperbolic orbit by the giant planets.

Detecting interstellar objects

A/2017 U1 object has been detected by the Pan-STARRS (for Panoramic Survey Telescope and Rapid Response System) 1 telescope, which is located at Haleakala Observatory, Hawaii. Pan-STARRS is constituted of two 1.8 m Ritchey–Chrétien telescopes, with a field-of-view of 3°. This is very large compared with classical instruments, and it is suitable for detection of bodies. It operates since 2010.

Detections could be expected from the future Large Synoptic Survey Telescope (LSST), which should operate from 2022 on. This facility will be a 8.4-meter telescope based in Chile, and will conduct surveys with a field-of-view of 3.5°. A recent study by Nathaniel Cook et al. suggests that LSST could detect between 0.001 and 10 interstellar comets during its nominal 10 year lifetime. Of course, 0.001 detection should be understood as the result of a formula. The authors give a range of 4 orders of magnitude in their estimation, which reflects how barely constrained the theoretical models are. This also means that we could be just lucky to have detected one.

What Pan-STARRS can do, LSST should be able to do. In a few years, i.e. in the late 2020s, the number or absence of new discoveries will tell us something on the efficiency of creation of interstellar objects in the nearby stars. Meanwhile, let us enjoy this exciting discovery!

The press release and its authors

That’s it for today! Please do not forget to comment. You can also subscribe to the RSS feed, and follow me on Twitter and Facebook.

The composition of Himalia, Elara, and Carme

Hi there! Today I tell you on 3 irregular satellites of Jupiter, you know, these small bodies which orbit very far from the planet. Himalia, Elara and Carme have been observed in the Near-InfraRed (NIR), and this gave Composition of Jupiter irregular satellites sheds light on their origin, by M. Bhatt et al., which has been recently accepted for publication in Astronomy and Astrophysics.

The irregular satellites of Jupiter

Jupiter has 69 known satellites, which we can divide into 3 groups:

  1. The 4 Galilean satellites Io, Europa, Ganymede and Callisto. These are large bodies, discovered in 1610 by Galileo Galilei,
  2. The 4 inner satellites Amalthea, Metis, Adrastea, and Thebe. These are small bodies, orbiting inside the orbit of Io,
  3. The irregular satellites, which orbit very far from Jupiter. These are small bodies as well, which are usually thought to have been captured, i.e. they probably not formed in the protojovian nebula.

Contrary to the inner and the Galilean satellites, the irregular satellites have pretty eccentric and inclined orbits. Their eccentricities may exceed 0.4, and most of them are retrograde, i.e. with an inclination larger than 90°. In fact, plotting their inclination vs. their semimajor axes reveals clustering.

Semimajor axes and inclinations of the irregular satellites of Jupiter. The inclinations are given with respect to the ecliptic.
Semimajor axes and inclinations of the irregular satellites of Jupiter. The inclinations are given with respect to the ecliptic.

At least 4 dynamical groups have been defined, all of them being named after the largest of their members:

  1. The Himalia group is made of prograde bodies, with inclinations between 26.6° and 28.3°, eccentricities between 0.11 and 0.25, and semimajor axes between 159 and 176 Jupiter radii (while Callisto orbits at 27 Jupiter radii),
  2. The Ananke group is composed of bodies with inclinations between 145.7° and 154.8°, eccentricities between 0.02 and 0.28, and semimajor axes between 250 and 305 Jupiter radii,
  3. The Pasiphase group is made of bodies with inclinations between 144.5° and 158.3°, eccentricities between 0.25 and 0.43, and semimajor axes between 320 and 350 Jupiter radii,
  4. The Carme group is made of bodies with inclinations between 164.9° and 165.5°, eccentricities between 0.23 and 0.27, and semimajor axes between 329 and 338 Jupiter radii

The clustering among these bodies suggests a common origin, i.e. a group of objects would have a unique progenitor. It is also interesting to notice that some groups are more dispersed than others. In particular, the dispersion of the Carme group is very limited. This could tell us something on the date of the disruption of the progenitor. Another clue regarding a common origin is the composition of these bodies.

Before addressing our 3 objects of interest, i.e. Himalia, Elara (member of the Himalia group), and Carme, I would like to mention Themisto and Carpo, which seem to be pretty isolated, and so would not share a common origin with the other bodies. Their dynamics might be affected by the Kozai-Lidov mechanism, which induces a correlated periodic evolution of their eccentrities and inclinations.

Himalia, Elara, and Carme

These 3 bodies are the ones addressed in this study. You can find below their relevant characteristics.

Semimajor axis Eccentricity Inclination Discovery Radius Albedo
Himalia 163.9 Rj 0.16 27.50° 1904 70-80 km 0.04
Elara 167.9 Rj 0.22 26.63° 1905 43 km 0.04
Carme 334.7 Rj 0.25 164.91° 1938 23 km 0.04

These were among the first known irregular moons of Jupiter. The inclinations are given with respect to the ecliptic, i.e. the orbital plane of the Earth. As a member of the Himalia group, Elara has similar dynamical properties with Himalia. We can also notice the small albedo of these bodies, i.e. of the order of 4%, which means that only 4% of the incident Solar light is reflected by the surface! In other words, these bodies are very dark, which itself suggests a carbonaceous composition. Spectroscopic observations permit to be more accurate.

Spectroscopic observations

These bodies were observed in the near infrared, at wavelengths between 0.8 and 5.5 μm. The observations were made at the IRTF (InfraRed Telescope Facility), located on the Mauna Kea (Hawai’i), with the SpeX spectrograph, during 4 nights, in 2012 and 2013. In measuring the light flux over a specific range of the spectrum, one can infer the presence of some material, which would absorb the light at a given wavelength. For that, we need to be accurate in the measurements, while the atmospheric conditions might alter them. This difficulty is by-passed by the presence of a star in the field, which serves as a reference for the measured light flux.

Detection of minerals

Once a spectrum reflectance vs. wavelength is obtained, it needs to be interpreted. In this study, the authors assumed that the observed spectra were a mixture of the spectra given by different minerals, which have been obtained in laboratories. They disposed of a database of 30 minerals, and fitted mixtures involving 4 of them, to the obtained spectra. This is an optimization algorithm, here named Spectral Mixture Analysis, which fits the relative proportion of the minerals. 4 minerals is actually the best they could obtain, i.e. they failed to produce a significantly better fit in adding a 5th mineral.

In other words, from the absorption spectrum of such a body, you can guess its 4 main components… at least of the surface.

Himalia and Elara are alike, Carme is different

Well, the title contains the conclusion. This is not very surprising, since Himalia and Elara belong to the same group. We can say that the composition confirms the guess that they should have a common origin. Previous studies gave the same conclusions.

In this specific case, Himalia and Elara have a peak of absorption centered around 1.2 μm, and their spectra are similar to C-type, i.e. carbonaceous, asteroids (52) Europa and (24) Themis, of the outer asteroid belt. The best match for Himalia is obtained with a mixture of magnetite and ilmenite, both being iron oxides, with minnesotaite, which is a ferric phyllosilicate. Elara seems to have a similar composition, but the match is not that good. In particular, the spectrum is more dispersed than for Himalia, and a little redder.

Carme has a different spectrum, with a peak of absorption centered around 1.6 μm, and is probably composed of black carbon, minnesotaite, and ilmenite. Another study has proposed that Carme could have a low-level cometary activity, but that would require to observe it at shorter wavelengths. Out of the scope of this study.

The study and the authors

That’s it for today! Please do not forget to comment. You can also subscribe to the RSS feed, and follow me on Twitter and Facebook.

A new contact binary

Hi there! Today I will tell you on the discovery that an already known Trans-Neptunian Object is in fact probably a contact binary. This is the opportunity for me to present you 2004 TT357: A potential contact binary in the Trans-Neptunian Belt by Audrey Thirouin, Scott S. Sheppard, and Keith S. Noll. This study has recently been published in The Astrophysical Journal.

2004 TT357‘s facts

As suggested by its name, 2004 TT357 was discovered in 2004. More precisely in August by a team led by Marc W. Buie, at Kitt Peak Observatory, Arizona, USA, on the 4-m Mayall telescope. From its magnitude, its radius is estimated to be between 87 and 218 km, depending on the albedo of the asteroid, i.e. the fraction of Solar light which is reflected by its surface. This albedo is unknown. You can find below its orbital elements.

Orbital elements of 2004 TT357
Semimajor axis 54.97 AU
Eccentricity 0.43
Inclination
Orbital period 408 y

These elements show that 2004 TT357 is in a 5:2 mean-motion resonance in Neptune, i.e. it performs 2 revolutions around the Sun while Neptune makes 5. This makes 2004 TT357 a Scaterred Disc Resonant Object. Its high eccentricity is probably at least partly due to this resonance.

Contact binaries

In astronomy, a binary object is a group of two objects, which are so linked together that they orbit around a common barycenter. Of course, their separation is pretty small. There are binary stars, here we speak about binary asteroids.
A contact binary is a kind of extreme case, in which the two components touch each other. In some sense, this is a single object, but with two different lobes. This was probably a former classical binary, which lost enough angular momentum so that the two objects eventually collided, but slowly enough to avoid any catastrophic outcome. It is thought that there is a significant fraction of contact binaries in the Solar System, i.e. between 5% and 50%, depending on the group you are considering.

Characterizing a known object as a contact binary is not an easy task, particularly for the Trans-Neptunian Objects, because of their distance to us. Among them, only (139775) 2001 QG298 is a confirmed contact binary, while 2003 SQ317 and (486958) 2014 MU69 are probable ones. This study concludes that 2004 TT357 is a probable one as well.

Observations at Lowell Observatory

Lowell Observatory is located in Flagstaff, Arizona, USA. It has been founded by Percival Lowell in 1894, and among its achievements is the discovery of the former planet Pluto in 1930, by Clyde Tombaugh. Currently, the largest of its instruments is the 4.3-m Discovery Channel Telescope (DCT), which has been partly funded by Discovery Communications. This telescope has its first light in April 2012, it is located in the Coconino National Forest near Happy Jack, Arizona, at an altitude of 2,360 meters.

The Discovery Channel Telescope. © Lowell Observatory
The Discovery Channel Telescope. © Lowell Observatory

The authors used this telescope, equipped with the Large Monolithic Imager (LMI). They acquired two sets of observation, in December 2015 and February 2017, during which they posed during 600 and 700 seconds, respectively. 2004 TT357 had then a mean visual magnitude of 22.6 and 23, respectively.

The Large Monolithic Imager. © Lowell Observatory
The Large Monolithic Imager. © Lowell Observatory

Analyzing the data

You can find below the photometric measurements of 2004 TT357.

The first set of observations. The measurements are represented with the uncertainties.
The first set of observations. The measurements are represented with the uncertainties.
The second set of observations. The measurements are represented with the uncertainties.
The second set of observations. The measurements are represented with the uncertainties.

We can see pretty significant variations of the incoming light flux, these variations being pretty periodic. This periodicity is the signature of the rotation of the asteroid, which does not always present the same face to the terrestrial observer. From these lightcurves, the authors measure a rotation period of 7.79±0.01 h. From the curves, the period seems twice smaller, but if we consider that the asteroid should be an ellipsoid, then its geometrical symmetries tell us that our line of sight should be aligned twice with the long axis and twice with the short axis during a single period. So, during a rotation period, we should see two minimums and two maximums. This assumes that we are close to the equatorial plane.

Another interesting fact is the pretty high amplitude of variation of the incident light flux. If you are interested in it, go directly to the next section. Before that, I would like to tell you how this period of 7.79±0.01 h has been determined.

The authors used 2 different algorithms:

  • the Lomb periodogram technique,
  • the phase dispersion minimization (PDM).

Usually periodic signals are described as sums of sinusoids, thanks to Fourier transforms. Unfortunately, Fourier is not suitable for unevenly-spaced data. The Lomb (or Lomb-Scargle) periodogram technique consists to fit a sinusoid to the data, thanks to the least-squares method, i.e. you minimize the squares of the departure of your signal from a sinusoid, in adjusting its amplitude, phase, and frequency. PDM is an astronomical adaptation of data folding. You guess a period, and you split your full time interval into sub-intervals, which duration is the period you have guessed. Then you superimpose them. If this the period you have guessed is truly a period of the signal, then all of your time intervals should give you pretty the same signal. If not, then the period you have guessed is not a period of the signal.

Let us go back now to the variations in the amplitude.

Physical interpretation

The authors assume that periodic magnitude variations could have 3 causes:

  • Albedo variations
  • Elongation of the asteroid
  • Two bodies, i.e. a binary.

The albedo quantify the portion of Solar flux, which is reflected by the surface. Here, the variations are too large to be due to the variations of the albedo.

The authors estimate that, if 2004 TT357 were a single, ellipsoidal body, then a/b = 2.01 and c/a = 0.38, a,b, and c being the 3 axis of the ellipsoid. This is hardly possible if the shape corresponds to an equilibrium figure (hydrostatic equilibrium, giving a Jacobi ellipsoid). Moreover, this would mean that 2004 TT357 would have been ideally oriented… very unlikely

As a consequence, 2004 TT357 is probably a binary, with a mass ratio between 0.4 and 0.8. Hubble Space Telescope observed 2004 TT357 in 2012, and detected no companion, which means it is probably a contact binary. Another way to detect a companion is the analysis of a stellar occultation (see here). Fortunately for us, one will occur in February 2018.

A star occultation in February 2018

On 5 February 2018, 2004 TT357 shall occult the 12.8-magnitude star 2UCAC 38383610, in the constellation Taurus, see here. This occultation should be visible from Brazil, and provide us new data which would help to determine the nature of 2004 TT357. Are you interested to observe?

To know more

That’s it for today! Please do not forget to comment. You can also subscribe to the RSS feed, and follow me on Twitter and Facebook.

How rough is Mercury?

Hi there! Today I will tell you on the smoothness of the surface of Mercury. This is the opportunity for me to present The surface roughness of Mercury from the Mercury Laser Altimeter: Investigating the effects of volcanism, tectonism, and impact cratering by H.C.M. Susorney, O.S. Barnouin, C.M. Ernst and P.K. Byrne, which has recently been published in Journal of Geophysical Research: Planets. This paper uses laser altimeter data provided by the MESSENGER spacecraft, to measure the regularity of the surface in the northern hemisphere.

The surface of Mercury

I already had the opportunity to present Mercury on this blog. This is the innermost planet of the Solar System, about 3 times closer to the Sun than our Earth. This proximity makes space missions difficult, since they have to comply with the gravitational action of the Sun and with the heat of the environment. This is why Mercury has been visited only by 2 space missions: Mariner 10, which made 3 fly-bys in 1974-1975, and MESSENGER, which orbited Mercury during 4 years, between 2011 and 2015. The study of MESSENGER data is still on-going, the paper I present you today is part of this process.

Very few was known from Mercury before Mariner 10, in particular we just had no image of its surface. The 3 fly-bys of Mariner 10 gave us almost a full hemisphere, as you can see below. Only a small stripe was unknown.

Mercury seen by Mariner 10. © NASA.
Mercury seen by Mariner 10. © NASA.

And we see on this image many craters! The details have different resolutions, since this depends on the distance between Mercury and the spacecraft when a given image was taken. This map is actually a mosaic.
MESSENGER gave us full maps of Mercury (see below).

Mercury seen by MESSENGER. © USGS
Mercury seen by MESSENGER. © USGS

Something that may be not obvious on the image is a non-uniform distribution of the craters. So, Mercury is composed of cratered terrains and smooth plains, which have different roughnesses (you will understand before the end of this article).
Craters permit to date a terrain (see here), i.e. when you see an impact basin, this means that the surface has not been renewed since the impact. You can even be more accurate in dating the impact from the relaxation of the crater. However, volcanism brings new material at the surface, which covers and hides the craters.

This study focuses on the North Pole, i.e. latitudes between 45 and 90°N. This is enough to have the two kinds of terrains.

Three major geological processes

Three processes affect the surface of Mercury:

  1. Impact cratering: The early Solar System was very dangerous from this point of view, having several episodes of intense bombardments in its history. Mercury was particularly impacted because the Sun, as a big mass, tends to focus the impactors in its vicinity. It tends to rough the surface.
  2. Volcanism: In bringing new and hot material, it smoothes the surface,
  3. Tectonism: Deformation of the crust.

If Mercury had an atmosphere, then erosion would have tended to smooth the surface, as on Earth. Irrelevant here.

To measure the roughness, the authors used data from the Mercury Laser Altimeter (MLA), one of the instruments of MESSENGER.

The Mercury Laser Altimeter (MLA) instrument

This instrument measured the distance between the spacecraft and the surface of Mercury from the travel time of light emitted by MLA and reflected by the surface. Data acquired on the whole surface permitted to provide a complete topographic map of Mercury, i.e. to know the variations of its radius, detect basins and mountains,… The accuracy and the resolution of the measurements depend on the distance between the spacecraft and the surface, which had large variations, i.e. between 200 and 10,300 km. The most accurate altimeter data were for the North Pole, this is why the authors focused on it.

Roughness indicators

You need at least an indicator to quantify the roughness, i.e. a number. For that, the authors work on a given baseline on which they had data, removed a slope, and calculated the RMS (root mean square) deviation, i.e. the average squared deviation to a constant altitude, after removal of a slope. When you are on an inclined plane, then your altitude is not constant, but the plane is smooth anyway. This is why you remove the slope.

But wait a minute: if you are climbing a hill, and you calculate the slope over 10 meters, you have the slope you are climbing… But if you calculate it over 10 km, then you will go past the summit, and the slope will not be the same, while the summit will affect the RMS deviation, i.e. the roughness. This means that the roughness depends on the length of your baseline.

This is something interesting, which should be quantified as well. For this, the authors used the Hurst exponent H, such that ν(L) = ν0LH, where L is the length of the baseline, and ν the standard deviation. Of course, the data show that this relation is not exact, but we can say it works pretty well. H is determined in fitting the relation to the data.

Results

To summarize the results:

  • Smooth plains: H = 0.88±0.01,
  • Cratered terrains: H = 0.95±0.01.

The authors allowed the baseline to vary between 500 m and 250 km. The definition of the Hurst exponent works well for baselines up to 1.5 km. But for any baseline, the results show a bimodal distribution, i.e. two kinds of terrains, which are smooth plains and cratered terrains.

It is tempting to compare Mercury to the Moon, and actually the results are consistent for cratered terrains. However, the lunar Maria seem to have a slightly smaller Hurst exponent.

To know more

That’s it for today! The next mission to Mercury will be Bepi-Colombo, scheduled for launch in 2018 and for orbital insertion in 2025. Meanwhile, please do not forget to comment. You can also subscribe to the RSS feed, and follow me on Twitter and Facebook.