Tag Archives: resonances

The mass of Cressida from Uranus’ rings

Hi there! Today I will present you a new way to weigh an inner satellite of a giant planet. This is the opportunity for me to present you Weighing Uranus’ moon Cressida with the η Ring by Robert O. Chancia, Matthew M. Hedman & Richard G. French. This study has recently been accepted for publication in The Astronomical Journal.

The inner system of Uranus

Uranus is known to be the third planet of the Solar System by its radius, the 4th by its mass, and the 7th by its distance to the Sun. It is also known to be highly tilted, its polar axis almost being in its orbital plane. You may also know that it has 5 major satellites (Ariel, Umbriel, Titania, Oberon, and Miranda), and that it has been visited by the spacecraft Voyager 2 in 1986. But here, we are interested in its inner system. If we traveled from the center of Uranus to the orbit of the innermost of its major satellites, i.e. Miranda, we would encounter:

  • At 25,559 km: the location where the atmosphere reaches the pressure 1 bar. This is considered to be the radius of the planet.
  • Between 37,850 and 41,350 km: the ζ Ring,
  • At 41,837 km: the 6 Ring,
  • At 42,234 km: the 5 Ring,
  • At 42,570 km: the 4 Ring,
  • At 44,718 km: the α Ring,
  • At 45,661 km: the β Ring,
  • At 47,175 km: the η Ring,
  • At 47,627 km: the γ Ring,
  • At 48,300 km: the δ Ring,
  • At 49,770 km: the satellite Cordelia (radius: 20 km),
  • At 50,023 km: the λ Ring,
  • At 51,149 km: the ε Ring
  • At 53,790 km: the satellite Ophelia (radius: 22 km),
  • At 59,170 km: the satellite Bianca (radius: 26 km),
  • At 61,780 km: the satellite Cressida (radius: 40 km),
  • At 62,680 km: the satellite Desdemona (radius: 34 km),
  • At 64,350 km: the satellite Juliet (radius: 47 km),
  • At 66,090 km: the satellite Portia (radius: 68 km),
  • Between 66,100 and 69,900 km: the ν Ring,
  • At 69,940 km: the satellite Rosalind (radius: 36 km),
  • At 74,800 km: the satellite Cupid (radius: 9 km),
  • At 75,260 km: the satellite Belinda (radius: 45 km),
  • At 76,400 km: the satellite Perdita (radius: 15 km),
  • At 86,010 km: the satellite Puck (radius: 81 km),
  • Between 86,000 and 103,000 km: the μ Ring,
  • In the μ Ring, at 97,700 km: the satellite Mab (radius: 13 km)
  • At 129,390 km: the satellite Miranda (radius: 236 km).

The rings of Uranus are being discovered since 1977. Originally it was from star occultations observed from the Earth. Then Voyager 2 visited Uranus in 1986, which revealed other rings, and more recently the Hubble Space Telescope imaged some of them, permitting other discoveries.. Most of them have a width of ≈1 km.
All of the inner moons have been discovered on Voyager 2 images, except Cupid and Mab, which have been discovered in 2003, once more thanks to Hubble. On the contrary, the major moons have been discovered between 1787 and 1948.

Today we will focus only on

  • At 47,175 km: the η Ring,
  • At 61,780 km: the satellite Cressida (radius: 40 km).

The η Ring is very close to the 3:2 mean-motion resonance (MMR) with Cressida, which means that any particle of the η Ring makes 3 revolutions around Uranus while Cressida makes 2. As a consequence, Cressida has a strong gravitational action on the η Ring.

Gravitational interactions

How do we know the mass of planetary bodies? When we send a spacecraft close enough, the spacecraft is deviated, and from the deviation we have the gravity field, or at least the mass. If we cannot send a spacecraft, then we can invert, i.e. analyze, the interactions between different bodies. We know the mass of the Sun thanks to the orbits of the planets, we know the mass of Jupiter thanks to the orbits of its satellites, and the deviations of the spacecraft. We can also use MMR. For instance, in the system of Saturn, the mass ratios between Mimas and Tethys, between Enceladus and Dione, and between Janus and Epimetheus, were accurately known before the arrival of Cassini, thanks to resonant relations.

We can have resonant interactions between a satellite and a ring, as well. A ring is actually a cloud of small particles, and the way their motion is affected reveals the gravitational interaction with something. When you have a MMR, then the ring exhibits streamlines, which give a pattern with equally spaced corners. From the number of these corners you can determine the MMR involved, and from the size of the pattern you get the mass of the disturbing satellite. This is exactly what happens here, i.e. 3:2 MMR with Cressida affects the η Ring in such a way that you can read the mass of Cressida from the shape of this ring. But for that, you need to be accurate enough on the location of the ring.

The data

The authors used 49 observations, including 3 Voyager 2 ones, the other ones being star occultations by rings. Such an observation should be anticipated, i.e. the relative position of Uranus with respect to thousands of stars is calculated, then the star has to be observed where possible, i.e. in a place where it will be high enough in the sky, and of course at night. You measure the light flux coming from the star, which should be pretty constant… and is not because of the variability of the atmospheric thickness since the star is moving in the sky (remember: the Earth rotates in one day), so you have to compensate with other stars… and if you detect a flux drop, then this means that something is occulting the star. Possibly a ring.
Most of the observations were made in the K band, i.e. at an infrared wavelength of 2.2 μm, where Uranus is fainter than its rings. These observations have been made between 1977 and 1996. Since then, the opening of the rings is too small, i.e. we see Uranus by the edge, which reduces the chances to occult a star.

Methodology

The authors made a least-square fit. This means that they fitted their corpus of observations with a shape of the ring as R-A cos (mθ), where R is a constant radius, A is an amplitude of distortion of the ring, θ is the angle (a longitude), and m is a factor giving the frequency of the distortion, which could be related to its cause, i.e. the orbital motion of the satellite affecting the ring. You fit R, A and m, i.e. you adjust them so as to reduce the difference (the error, which is mathematically seen as a distance) between your model and the observations. From R you have a ring (and you can check whether there should be a ring there), from A you have the mass of the satellite, and from m and have its frequency (and you can check whether a known satellite has this frequency).
The authors show that the highest effect of the inner satellites on the rings should be the effect of Cressida on the η Ring, thanks to the 3:2 MMR.

Results

The authors find that Cressida should have a density of 0.86±0.16 g.cm-3, which is lighter than water. Usually these bodies are supposed to be kind of porous dirty ice, which would mean this kind of density. This is the first measurement of the density of an inner satellite of Uranus. A comparison with other systems shows that this is much denser than the inner satellites of Saturn. However, the inner satellite of Jupiter Amalthea has a pretty similar density.

Finally the authors say that they used this method on other rings, and that additional results should be expected, so we stay tuned. They also say that a spacecraft orbiting Uranus would help knowing these satellites. I cannot agree more. Some years ago, a space mission named Uranus Pathfinder has been proposed to ESA, and another one, named Uranus orbiter and probe, has been proposed to NASA.

The study and the authors

That’s it for today! Please do not forget to comment. You can also subscribe to the RSS feed, and follow me on Twitter and Facebook.

A polar resonant asteroid

Hi there! Did you know that an asteroid could be resonant and in polar orbit? Yes? No? Anyway, one of them has been confirmed as such, i.e. this body was already discovered, known to be on a polar orbit, but it was not known to be in mean-motion resonance with Neptune until now. This is the opportunity for me to present you First transneptunian object in polar resonance with Neptune, by M.H.M. Morais and F. Namouni. This study has recently been accepted for publication in The Monthly Notices of the Royal Astronomical Society.

Polar asteroids

The planets of the Solar System orbit roughly in the same plane. In other words, they have small mutual inclinations. However, asteroids are much more scattered, and can have any inclination with respect to the ecliptic, i.e. the orbital plane of the Earth, even if low inclinations are favored.

Two angles are needed to orientate an orbit:

  • the ascending node, which varies between 0 and 360°, and which is the angle between a reference and the intersection between the ecliptic and the orbital plane,
  • the inclination, which is the angle between the ecliptic and the orbital plane. It varies between 0° and 180°.

So, an almost planar orbit means an inclination close to 0° or close to 180°. Orbits close to 0° are prograde, while orbits close to 180° are retrograde. However, when your inclination is close to 90°, then you have a polar orbit. There are prograde and retrograde polar orbits, whether the inclination is smaller (prograde) or larger (retrograde) than 90°.

There are 7 known Trans-Neptunian Objects with an eccentricity smaller than 0.86 and inclination between 65 and 115°, hence 7 known polar TNOs. You can find them below:

Semimajor axis Eccentricity Inclination Ascending node Period
(471325) 2011 KT19 (Niku) 35.58 AU 0.33 110.12° 243.76° 212.25 y
2008 KV42 (Drac) 41.44 AU 0.49 103.41° 260.89° 266.75 y
2014 TZ33 38.32 AU 0.75 86.00° 171.79° 237.20 y
2015 KZ120 46.07 AU 0.82 85.55° 249.98° 312.70 y
(127546)2002 XU93 67.47 AU 0.69 77.95° 90.39° 554.18 y
2010 WG9 52.90 AU 0.65 70.33° 92.07° 384.77 y
2017 CX33 73.97 AU 0.86 72.01° 315.88° 636.21 y

These bodies carry in their names their year of discovery. As you can see, the first of them has been discovered only 15 years ago. We should keep in mind that TNOs orbit very far from the Earth, this is why they are so difficult to discover, polar or not.

The last of them, 2017 CX33, is so recent that the authors did not study it. A recent discovery induces a pretty large uncertainty on the orbital elements, so waiting permits to stay on the safe side. Among the 6 remaining, 4 (Niku, Drac, 2002 XU93 and 2010 WG9) share (very) roughly the same orbit, 2 of them being prograde, while the others two are retrograde. This happened very unlikely by chance, but the reason for this rough alignment is still a mystery.

Orbits of the polar TNOs, in the x-y plane.
Orbits of the polar TNOs, in the x-y plane.
Orbits of the polar TNOs, in the y-z plane.
Orbits of the polar TNOs, in the y-z plane.

The study I present you today investigated the current dynamics of these bodies, and found a resonant behavior for one of them (Niku).

Behavior of the resonant asteroids

By resonant behavior, I mean that an asteroid is affected by a mean-motion resonance with a planet. This means that it makes a given (integer) number of revolutions around the Sun, while the planet makes another number of revolutions. Many outcomes are possible. It can slowly enhance the eccentricity and / or the inclination, which could eventually lead to a chaotic behavior, instability, collision… it could also protect the body from close encounters…

It usually translates into an integer combination of the fundamental frequencies of the system (orbital frequencies, frequencies of precession of the nodes and pericentres), which is null, and this results in an integer combination of angles positioning the asteroid of the planet, which oscillates around a given number instead of circulating. In other words, this angle is bounded.

Another point of interest is how the asteroid has been trapped into the resonance. A resonance is between two interacting bodies, but the mass ratio between an asteroid and a planet implies that the planet is insensitive to the gravitational action of the asteroid, and so the asteroid is trapped by the planet. The fundamental frequencies of the orbital motion are controlled by the semimajor axes of the two bodies, so a trapping into a resonance results from a variation of the semimajor axes. Models of formation of the Solar System suggest that the planets have migrated, this could be a cause. Another cause is close encounters between planets and asteroids, which result in abrupt changes in the trajectory of the asteroid. And this is probably the case here: Niku got trapped after a close encounter.

Numerical and analytical study

The authors used both numerical and analytical methods to get, understand, and secure their results.

Numerical study

The authors ran long-term numerical simulations of the orbital motion of the 6 relevant asteroids, perturbed by the planets. They ran 3 kinds of simulations: 2 with different integrators (algorithms) over 400 kyr and 100 Myr and 8 planets, and one over 400 Myr and the four giant planets. With less planets, you go faster. Moreover, since the inner planets have shorter orbital periods, removing them allows you to increase the time-step, and thus go further in time, inward and backward. In each of these simulations, the authors cloned the asteroids to take into consideration the uncertainty on the orbital elements. They used for that a well-known devoted code, MERCURY.

Analytical study

Numerical studies give you an idea of the possible dynamical states of a system, but you need to write down equations to fully understand it. Beside these numerical simulations, the authors wrote a dynamical theory of resonant polar orbits, in another paper (or here).

This consists in reducing the equations to the only terms, which are useful to reproduce the resonant dynamics. For that, you keep the secular variations, i.e. precessions of the nodes and pericentres, and the term involving the resonant argument. This is a kind of averaged dynamics, in which all of the small oscillations of the orbital elements have been dropped. To improve the relevance of the model, the authors used orbital elements which are based on the barycenter (center of mass) of the whole Solar System instead on the Sun only. This is a small correction, since the barycenter is at the edge of the Sun, but the authors mention that it improves their results.

Results

Niku, i.e. (471325) 2011 KT19, is trapped into a 7:9 mean-motion resonance with Neptune. In other words, it makes 7 revolutions around the Sun (sorry: the barycenter of the Solar System) while Neptune makes 9. More precisely, its resonant argument is φ=9λ-7λN-4ϖ+2Ω, where λ and λN are the mean longitudes of the asteroid and of Neptune, respectively, ϖ is the longitude of its pericenter, and Ω is the one of its ascending node. Plotting this argument shows a libration around 180°. Niku has been trapped in this resonance after a close encounter with Neptune, and should leave this resonance in 16±11 Myr. This means that all of the numerical simulations involving Niku show a resonant object, however they disagree on the duration of the resonance.
Their might be another resonant object: a few simulations suggest that Drac, i.e. 2008 KV42 is in a 8:13 mean-motion resonance with Neptune.

To know more

That’s it for today! Please do not forget to comment. You can also subscribe to the RSS feed, and follow me on Twitter and Facebook.

The dynamics of the Quasi-Satellites

Hi there! After reading this post, you will know all you need to know on the dynamics of quasi-satellites. This is the opportunity to present you On the co-orbital motion in the planar restricted three-body problem: the quasi-satellite motion revisited, by Alexandre Pousse, Philippe Robutel and Alain Vienne. This study has recently been published in Celestial Mechanics and Dynamical Astronomy.

The 1:1 mean-motion resonance at small eccentricity

(see also here)

Imagine a pretty simple case: the Sun, a planet with a keplerian motion around (remember: its orbit is a static ellipse), and a very small third body. So small that you can neglect its mass, i.e. it does not affect the motion of the Sun and the planet. You know that the planet has no orbital eccentricity, i.e. the static ellipse serving as an orbit is actually a circle, and that the third body (let us call it the particle) has none either. Moreover, we want the particle to orbit in the same plane than the planet, and to have the same revolution period around the Sun. These are many conditions.
Under these circumstances, mathematics (you can call that celestial mechanics) show us that, in the reference frame which is rotating with the planet, there are two stable equilibriums 60° ahead and astern the planet. These two points are called L4 and L5 respectively. But that does not mean that the particle is necessary there. It can have small oscillations, called librations around these points, the resulting orbits being called tadpole orbits. It is even possible to have orbits enshrouding L4 and L5, this results in large librations orbits, called horseshoe orbits.

All of these configurations are stable. But remember: the planet is much less massive than the Sun, the particle is massless, the orbits are planar and circular… Things become tougher when we relax one of these assumptions. And the authors assumed that the particle had a significant eccentricity.

At high eccentricities: Quasi-satellites

Usually, increasing the eccentricity destabilizes you. This is still true here, i.e. co-orbital orbits are less stable when eccentric. But increasing the eccentricity also affects the dynamical structure of your problem in such a way that other dynamical configurations may appear. And this is the case here: you have an equilibrium where your planet lies.

Ugh, what does that mean? If you are circular, then your particle is at the center of your planet… Nope, impossible. But wait a minute: if you oscillate around this position without being there… yes, that looks like a satellite of the planet. But a satellite is under the influence of the planet, not of the star… To be dominated by the star, you should be far enough from the planet.

I feel the picture is coming… yes, you have a particle on an eccentric orbit around the star, the planet being in the orbit. And from the star, this looks like a satellite. Funny, isn’t it? And such bodies exist in the Solar System.

Orbit of a quasi-satellite. It follows the planet, but orbits the star.
Orbit of a quasi-satellite. It follows the planet, but orbits the star.

Known quasi-satellites

Venus has one known quasi-satellite, 2002 VE68. This is a 0.4-km body, which has been discovered in 2002. Like Venus, it orbits the Sun in 225 days, but has an orbital eccentricity of 0.41, while the one of Venus is 0.007. It is thought to be a quasi-satellite of Venus since 7,000 years, and should leave this configuration in some 500 years.

The Earth currently has several known quasi-satellites, see the following table:

(277810) 2006 FV350.387.1°10,000 y2013 LX280.4550°40,000 y2014 OL3390.4610.2°1,000 y(469219) 2016 HO30.107.8°400 y

Known quasi-satellites of the Earth
Name Eccentricity Inclination Stability
(164207) 2004 GU9 0.14 13.6° 1,000 y

These bodies are all smaller than 500 meters. Because of their significant eccentricities, they might encounter a planet, which would then affect their orbits in such a way that the co-orbital resonance would be destabilized. However, significant inclinations limit the risk of encounters. Some bodies switch between quasi-satellite and horseshoe configurations.

Here are the known quasi-satellites of Jupiter:

Known quasi-satellites of Jupiter
Name Eccentricity Inclination Stability
2001 QQ199 0.43 42.5° > 12,000 y
2004 AE9 0.65 1.6° > 12,000 y
329P/LINEAR-Catalina 0.68 21.5° > 500 y
295P/LINEAR 0.61 21.1° > 2,000 y

329P/LINEAR-Catalina and 295P/LINEAR being comets.

Moreover, Saturn and Neptune both have a confirmed quasi-satellite. For Saturn, 2001 BL41 should leave this orbit in about 130 years. It has an eccentricity of 0.29 and an inclination of 12.5°. For Neptune, (309239) 2007 RW10 is in this state since about 12,500 years, and should stay in it for the same duration. It has an orbital eccentricity of 0.3, an inclination of 36°, and a diameter of 250 km.

Understanding the dynamics

Unveiling the dynamical/mathematical structure which makes the presence of quasi-satellites possible is the challenge accepted by the authors. And they succeeded. This is based on mathematical calculation, in which you write down the equations of the problem, you expand them to retain only what is relevant, in making sure that you do not skip something significant, and you manipulate what you have kept…

The averaging process

The first step is to write the Hamiltonian of the restricted planar 3-body problem, i.e. the total energy of a system constituted by the Sun, the planet, and the massless particle. The dynamics is described by so-called Hamiltonian variables, which allow interesting mathematical properties…
Then you expand and keep what you need. One of the pillars of this process is the averaging process. When things go easy, i.e. when your system is not chaotic, you can describe the dynamics of the system as a sum of sinusoidal contributions. This is straightforward to figure out if you remember that the motions of the planets are somehow periodic. Somehow means that these motions are not exactly sinusoidal, but close to it. So, you expand it in series, in which other sinusoids (harmonics) appear. And you are particularly interested in the one involving λ-λ’, i.e. the difference between the mean longitude of the planet and the particle. This makes sense since they are in the co-orbital configuration, that particular angle should librate with pretty small oscillations around a given value, which is 60° for tadpole orbits, 180° for horseshoes, and 0° for quasi-satellites. Beside this, you have many small oscillations, in which you are not interested. Usually you can drop them in truncating your series, but actually you just average them, since they average to 0. This is why you can drop them.
To expand in series, you should do it among a small parameter, which is usually the eccentricity. This means that your orbit looks pretty like a circle, and the other terms of the series represent the difference with the circle. But here there is a problem: to get quasi-satellite orbits, your eccentricity should be large enough, which makes the analytical calculation tougher. In particular, it is difficult to guarantee their convergence. The authors by-passed this problem in making numerical averaging, i.e. they computed numerically the integrals of the variables of the motion over an orbital period.

Once they have done this, they get a simplified system, based on one degree-of-freedom only. This is a pair of action-angle variables, which will characterize your quasi-satellite orbit. This study also requires to identify the equilibriums of the system, i.e. to identify the existing stable orbits.

Perspectives

So, this study is full of mathematical calculations, aiming at revisiting this problem. The authors mention as possible perspective the study of resonances between the planets, which disturb the system, and the proper frequency of the quasi-satellite orbit. This is the oscillating frequency of the angle characterizing the orbit, and if it is equal to a frequency already present in the system, it could have an even more interesting dynamics, e.g. transit between different states (quasi-satellite / horsehoe,…).

To know more…

That’s it for today! Please do not forget to comment. You can also subscribe to the RSS feed, and follow me on Twitter and Facebook.

The fate of the Alkyonides

Hello everybody! Today, I will tell you on the dynamics of the Alkyonides. You know the Alkyonides? No? OK… There are very small satellites of Saturn, i.e. kilometer-sized, which orbit pretty close to the rings, but outside. These very small bodies are known to us thanks to the Cassini spacecraft, and a recent study, which I present you today, has investigated their long-term evolution, in particular their stability. Are they doomed or not? How long can they survive? You will know this and more after reading this presentation of Long-term evolution and stability of Saturnian small satellites: Aegaeon, Methone, Anthe, and Pallene, by Marco Muñoz-Gutiérrez and Silvia Giuliatti Winter. This study has recently been accepted for publication in The Monthly Notices of the Royal Astronomical Society.

The Alkyonides

As usually in planetary sciences, bodies are named after the Greek mythology, which is the case of the four satellites discussed today. But I must admit that I cheat a little: I present them as Alkyonides, while Aegeon is actually a Hecatoncheires. The Alkyonides are the 7 daughters of Alcyoneus, among them are Anthe, Pallene, and Methone.

Here are some of there characteristics:

Methone Pallene Anthe Aegaeon
Semimajor axis 194,402 km 212,282 km 196,888 km 167,425 km
Eccentricity 0 0.004 0.0011 0.0002
Inclination 0.013° 0.001° 0.015° 0.001°
Diameter 2.9 km 4.4 km 2 km 0.66 km
Orbital period 24h14m 27h42m 24h52m 19h24m
Discovery 2004 2004 2007 2009

For comparison, Mimas orbits Saturn at 185,000 km, and the outer edge of the A Ring, i.e. of the main rings of Saturn, is at 137,000 km. So, we are in the close system of Saturn, but exterior to the rings.

Discovery of Anthe, aka S/2007 S4. Copyright: NASA.
Discovery of Anthe, aka S/2007 S4. Copyright: NASA.

These bodies are in mean-motion resonances with main satellites of Saturn, more specifically:

  • Methone orbits near the 15:14 MMR with Mimas,
  • Pallene is close to the 19:16 MMR with Enceladus,
  • Anthe orbits near the 11:10 MMR with Mimas,
  • Aegaeon is in the 7:6 MMR with Mimas.

As we will see, these resonances have a critical influence on the long-term stability.

Rings and arcs

Beside the main and well-known rings of Saturn, rings and arcs of dusty material orbit at other locations, but mostly in the inner system (with the exception of the Phoebe ring). In particular, the G Ring is a 9,000 km wide faint ring, which inner edge is at 166,000 km… Yep, you got it: Aegaeon is inside. Some even consider it is a G Ring object.

Methone and Anthe have dusty arcs associated with them. The difference between an arc and a ring is that an arc is longitudinally bounded, i.e. it is not extended enough to constitute a ring. The Methone arc extends over some 10°, against 20° for the Anthe arc. The material composing them is assumed to be ejecta from Methone and Anthe, respectively.

However, Pallene has a whole ring, constituted from ejecta as well.

Why sometimes a ring, and sometimes an arc? Well, it tell us something on the orbital stability of small particles in these areas. Imagine you are a particle: you are kicked from home, i.e. your satellite, but you remain close to it… for some time. Actually you drift slowly. While you drift, you are somehow shaken by the gravitational action of the other satellites, which disturb your Keplerian orbit around the planet. If you are shaken enough, then you may leave the system of Saturn. If you are not, then you can finally be anywhere on the orbit of your satellite, and since you are not the only one to have been ejected (you feel better, don’t you?), then you and your colleagues will constitute a whole ring. If you are lucky enough, you can end up on the satellite.

The longer the arc (a ring is a 360° arc), the more stable the region.

Frequency diffusion

The authors studied

  1. the stability of the dusty particles over 18 years
  2. the stability of the satellites in the system of Saturn over several hundreds of kilo-years (kyr).

For the stability of the particles, they computed the frequency diffusion index. It consists in:

  1. Simulating the motion of the particles over 18 years,
  2. Determining the main frequency of the dynamics over the first 9 years, and over the last 9 ones,
  3. Comparing these two numbers. The smaller the difference, the more stable you are.

The numerical simulations is something I have addressed in previous posts: you use a numerical integrator to simulate the motion of the particle, in considering an oblate Saturn, the oblateness being mostly due to the rings, and several satellites. Our four guys, and Janus, Epimetheus, Mimas, Enceladus, and Tethys.

How resonances destabilize an orbit

When a planetary body is trapped in a mean-motion resonance, there is an angle, which is an integer combination of angles present in its dynamics and in the dynamics of the other body, which librates. An example is the MMR Aegaeon-Mimas, which causes the angle 7λMimas-6λAegaeonMimas to librate. λ is the mean longitude, and ϖ is the longitude of the pericentre. Such a resonance is supposed to affect the dynamics of the two satellites but, given their huge mass ratio (Mimas is between 300 and 500 millions times heavier than Aegaeon), only Aegaeon is affected. The resonance is at a given location, and Aegaeon stays there.
But a given resonance has some width, and several resonant angles (we say arguments) are associated with a resonance ratio. As a consequence, several resonances may overlap, and in that case … my my my…
The small body is shaken between different locations, its eccentricity and / or inclination can be raised, until being dynamically unstable…
And in this particular region of the system of Saturn, there are many resonances, which means that the stability of the discovered body is not obvious. This is why the authors studied it.

Results

Stability of the dusty particles

The authors find that Pallene cannot clear its ring efficiently, despite its size. Actually, this zone is the most stable, wrt the dynamical environments of Anthe, Methone and Aegaeon. However, 25% of the particles constituting the G Ring should collide with Aegaeon in 18 years. This probably means that there is a mechanism, which refills the G Ring.

Stability of the satellites

From long-term numerical simulations over 400 kyr, i.e. more than one hundred millions of orbits, these 4 satellites are stable. For Pallene, the authors guarantee its stability over 64 Myr. Among the 4, this is the furthest satellite from Saturn, which makes it less affected by the resonances.

A perspective

The authors mention as a possible perspective the action of the non-gravitational forces, such as the solar radiation pressure and the plasma drag, which could affect the dynamics of such small bodies. I would like to add another one: the secular tides with Saturn, and the pull of the rings. They would induce drifts of the satellites, and of the resonances associated. The expected order of magnitude of these drifts would be an expansion of the orbits of a few km / tens of km per Myr. This seems pretty small, but not that small if we keep in mind that two resonances affecting Methone are separated by 4 km only.

This means that further results are to be expected in the upcoming years. The Cassini mission is close to its end, scheduled for 15 Sep 2017, but we are not done with exploiting its results!

To know more…

That’s it for today! Please do not forget to comment. You can also subscribe to the RSS feed, and follow me on Twitter and Facebook.

The dynamics of Saturn’s F Ring

Hi there! Today: a new post on the rings of Saturn. I will more specifically discuss the F Ring, in presenting you the study A simple model for the location of Saturn’s F ring, by Luis Benet and Àngel Jorba, which has recently been accepted for publication in Icarus.

The F Ring

The F Ring of Saturn is a narrow ring of particles. It orbits close to the Roche limit, which is the limit below which the satellites are not supposed to accrete because the differential gravitational action of Saturn on different parts of it prevents it. This is also the theoretical limit of the existence of the rings.

The F Ring seen by Cassini (Credit: NASA)
The F Ring seen by Cassini (Credit: NASA)

Its mean distance from the center of Saturn is 140,180 km, and its extent is some hundreds of kilometers. It is composed of a core ring, which width is some 50 km, and some particles which seem to be ejected in spiral strands.

Orbiting nearby are the two satellites Prometheus (inside) and Pandora (outside), which proximity involves strong gravitational perturbations, even if they are small.

The images of the F Ring, and in particular of its structures, are sometimes seen as an example of observed chaos in the Solar System. This motivates many planetary scientists to investigate its dynamics.

Mean-motion resonances in the rings

Imagine a planar configuration, in which we have a big planet (Saturn), a small particle orbiting around (the rings are composed of particles), and a third body which is very large with respect to the particle, but very small with respect to the planet (a satellite). The orbit of the particle is essentially an ellipse (Keplerian motion), but is also perturbed by the gravitational action of the satellite. This usually results in oscillating, periodic variations of its orbital elements, in particular the semimajor axis… except in some specific configurations: the mean motion resonances.

When the orbital periods of the particle and of the satellite are commensurate, i.e. when you can write the ratio of their orbital frequencies as a fraction of integers, then you have part of the gravitational action of the satellite on the particle which accumulates during the orbital history of the two bodies, instead of cancelling out. In such a case, you have a resonant interaction, which usually produces the most interesting effects in planetary systems.

There are resonances among planetary satellites as well, but here I will stick to the rings-satellites interactions, for which a specific formalism has been developed, itself inspired from the galactic dynamics. Actually, 4 angles should be considered, which are

  • the mean longitude of the particle λp, which locates the particle on its orbit,
  • the mean longitude of the satellite λs
  • the longitude of the pericentre of the particle ϖp, which locates the point of the orbit which is the closest to Saturn,

and

  • the longitude of the pericentre of the satellite ϖs.

The situation is a little more complicated when the orbits are not planar, please allow me to dismiss that question for this post.

You have a mean-motion resonance when you can write <pλp-(p+q)λs+q1ϖp+q2ϖs>=0, <> meaning on average. p, q, q1 and q2 are integer coefficients verifying q1+q2=q. The sum of the integer coefficients present in the resonant argument is null. This rule is sometimes called d’Alembert rule, and is justified by the fact that you do not change the physics of a system if you change the reference frame in which you describe it. The only way to preserve the resonant argument from a rotation of an angle α and axis z is that the sum of the coefficients is null.

It can be shown that the strongest resonances happen with |q|=1, meaning either |q1|=1 and q2=0, or
|q2|=1 and q1=0.

In the first case, pλp-(p+1)λsp is the argument of a Lindblad resonance, which pumps the eccentricity of the particle, while pλp-(p+1)λss is a corotation resonance, which is doped by the eccentricity of the satellite. Here I supposed a positive q, which means that the orbit of the satellite is exterior to the one of the particle. This is the case for the configurations F Ring – Pandora and F Ring – Titan. However, when the satellite is interior to the particle, like in the configuration F Ring Prometheus, then the argument of the Lindblad resonance should read pλs-(p+1)λpp, and the one of the corotation resonance is pλs-(p+1)λps.

As I said, these resonances have cumulative effects on the orbits. This means that we could expect that something happens, this something being possibly anything: a Lindblad resonance should pump the eccentricity of a particle and favor its ejection, but this also means that particle which would orbit nearby without being affected by the resonance would be more stable… chaotic effects might happen, which would be favored by the accumulation of resonances, the consideration of higher-order ones, the presence of several perturbers… This is basically what is observed in the F Ring.

The method: numerical integrations

The authors address this problem in running intensive numerical simulations of the behavior of the particles under the gravitational action of Saturn and some satellites. Let me specify that, usually, the rings are seen as clouds of interacting particles. They interact in colliding. In that specific study, the collisions are neglected. This allows the authors to simulate the trajectory of any individual particle, considered as independent of the other ones.

They considered that the particles are perturbed by the oblateness of Saturn expanded until the order 2 (actually this has been measured with a good accuracy until the order 6), Prometheus, Pandora, and Titan. Why these bodies? Because they wanted to consider the most significant ones on the dynamics of the F Ring. When you model so many particles (2.5 millions) over such a long time span (10,000 years), you are limited by the computation time. A way to reduce it is to remove negligible effects. Prometheus and Pandora are the two closest ones and Titan the largest one. The authors have detected that Titan slightly shifts the location of the resonances. However, they admit that they did not test the influence of Mimas, which is the closest of the mid-sized satellites, and which is known for having a strong influence on the main rings.

A critical point when you run numerical integrations, especially over long durations, is the accuracy, because you do not want to propagate errors. The authors use a symplectic scheme, based on a Hamiltonian formulation, i.e. on the conservation of the total energy, which can be expanded up to the order 28. The conservation of the total energy makes sense as long as the dissipation is neglected, which is the case here. The internal accuracy of the integrator was set to 10-21, which translated into a relative error on the angular momentum of Titan below 2.10-14 throughout the whole integration.

Measuring the stability

It might be tough to determine from a numerical integration whether a particle has a stable orbit or not. If you simulate its ejection, then you know, but if you do not see its ejection, you have to decide from the simulated trajectory whether the particle will be ejected one day or not, and possibly when.
For this, two kinds of indicator exists in the literature. The first kind addresses the chaos, or most specifically the hyperbolicity of the trajectory, while the second one addresses the variability of the fundamental frequencies of the system. From a rigorous mathematical point of view, these two notions are different. Anyway, the ensuing indicators are convenient ways to characterize non-periodic trajectories, and their use are commonly accepted as indicators of stability.
A hyperbolic point is an unstable equilibrium. For instance a rigid pendulum has a stable equilibrium down (when you perturb it, it will return down), but an unstable one up (it stays up until you perturb it). The up position is hyperbolic, while the down one is elliptic. The hyperbolicity of a trajectory implies a significant dependency on the initial conditions of the system: a slightly different initial position or different initial velocity will give you a very different trajectory. In systems having some complexity, this strongly suggests a chaotic behavior. The hyperbolicity can be measured with Lyapunov exponents. Different definitions of these exponents exist in the literature, but the idea is to measure the evolution of the norm of the vector which is tangent to the trajectory. Is this norm has an exponential growth, then you strongly depend on the initial conditions, i.e. you are hyperbolic, i.e. you are likely chaotic. Some indicators of stability are thus based on the evolution of the tangent vector.
The other way to estimate the stability is to focus on the fundamental frequencies of the trajectory. Each of the two angles which characterize the trajectory of the particle, i.e. its mean longitude λp and the longitude of its pericentre ϖp can be associated with a frequency of the problem. It is actually a little more complicated than just a time derivative of the relevant angle, because in that case you would have a contribution of the dynamics of the satellite. A more proper determination is made with a frequency analysis of the orbital elements, kind of Fourier. You are very stable when these frequencies do not drift with time. Here, the authors used first the relative variations of the orbital frequency as indicator of the stability. The most stable particles are the ones which present the smallest relative variations. In order to speed up the calculations, they also used the variations of the semimajor axis as an indicator, and considered that a particle was stable when the variations were smaller than 1.5 km.

Results

A study of stability necessarily focuses on the core of the rings, because the spiral strands are supposed to be doomed. And the authors get very confined zones of stability. A comparison between these zones of stability shows that several mean-motion resonances with Prometheus, Pandora and Titan are associated with them. This could be seen as consistent with the global aspect of the F Ring, but neither with the measured width of the core ring, nor with its exact location.

This problem emphasizes the difficulty to get accurate results with such a complex system. The study manages, with a simplified system of an oblate Saturn and 3 satellites, to render the qualitative dynamics of the F Ring, but this is not accurate enough to predict the future of the observed structures.

Some links

  • The study, also made freely available by the authors on arXiv. Thanks to them for sharing!
  • The web page of Luis Benet (UNAM, Mexico).
  • The web page of Àngel Jorba (University of Barcelona, Spain).

Thanks for having read all this. I wish you a Merry Christmas, and please feel free to share and comment!