Tag Archives: rings

The rings of Haumea

Hi there! I guess you have heard, last year, of the discovery of rings around the Trans-Neptunian Object Haumea. If not, don’t worry, I speak about it. Rings around planets are known since the discovery of Saturn (in fact a little later, since we needed to understand that these were rings), and now we know that there are rings around the 4 giant planets, and some small objects, which orbit beyond Saturn.

Once such a ring is discovered, we should wonder about its origin, its lifetime, its properties… This is the opportunity for me to present a Hungarian study, Dynamics of Haumea’s dust ring, by T. Kovács and Zs. Regály. This study has recently been accepted for publication in The Monthly Notices of the Royal Astronomical Society.

The Trans-Neptunian Object (136108)Haumea

Discovery

The discovery of (136108) Haumea was announced in July 2005 by a Spanish team, led by José Luis Ortiz, observing from Sierra Nevada Observatory (Spain). This discovery was made after analysis of observations taken in March 2003. As a consequence, this new object received the provisional name 2003 EL61.

But meanwhile, this object was observed since several months by the American team of Michael Brown, from Cerro Tololo Inter-American Observatory, in Chile, who also observed Eris. This led to a controversy. Eventually, the Minor Planet Center, which depends on the International Astronomical Union, credited Ortiz’s team for the discovery of the object, since they were the first to announce it. However its final name, Haumea, has been proposed by the American team, while usually the final name is chosen by the discoverer. Haumea is the goddess of fertility and childbirth in Hawaiian mythology. The Spanish team wished to name it Ataecina, after a popular goddess worshipped by the ancient inhabitants of the Iberian Peninsula.

Reanalysis of past observations revealed the presence of Haumea on photographic plates taken in 1955 at Palomar Observatory (we call that a precovery).

Properties

You can find below some numbers regarding Haumea.

Semi-major axis 43.218 AU
Eccentricity 0.191
Inclination 28.19°
Orbital period 284.12 yr
Spin period 3.92 h
Dimensions 2,322 × 1,704 × 1,138 km
Apparent magnitude 17.3

As a massive Trans-Neptunian Object, i.e. massive enough to have a pretty spherical shape, it is classified as an ice dwarf, or plutoid. This shape is pretty regular, but not that spherical actually. As you can see from its 3 diameters (here I give the most recent numbers), this is a triaxial object, with a pretty elongated shape… and this will be important for the study.

It orbits in the 7:12 mean-motion resonance with Neptune, i.e. it performs exactly 7 revolutions around the Sun while Neptune makes 12. This is a 5th order resonance, i.e. a pretty weak one, but which anyway permits some stability of the objects, which are trapped inside. This is why we can find some!

We can also see that it has a rapid rotation (less then 4 hours!). Moreover, it is pretty bright, with a geometrical albedo close to 0.8. This probably reveals water ice at its surface.

And Haumea has two satellites, and even rings!

Two satellites, and rings

Haumea has two known satellites, Namaka and Hi’iaka, named after two daughters of the goddess Haumea. They were discovered by the team of Michael Brown in 2005, simultaneously with its observations of Haumea, i.e. before the announcement of its discovery. You can find below some of their characteristics.

Namaka Hi’iaka
Semi-major axis 25657 km 49880 km
Eccentricity 0.25 0.05
Orbital period 18.28 d 49.46 d
Mean diameter 170 km 310 km
Keck image of Haumea and its moons. Hi'iaka is above Haumea (center), and Namaka is directly below. © Californian Institute of Technology
Keck image of Haumea and its moons. Hi’iaka is above Haumea (center), and Namaka is directly below. © Californian Institute of Technology

Usually such systems are expected to present spin-orbit resonances, e.g. like our Moon which rotates synchronously with the Earth. Another example is Pluto-Charon, which is doubly synchronous: Pluto and Charon have the same spin (rotational) period, which is also the orbital period of Charon around Pluto. Here, we see nothing alike. The rotational period of Haumea is 4 hours, while its satellites orbit much slower. We do not dispose of enough data to determine their rotation periods, maybe they are synchronous, i.e. with spin periods of 18.28 and 49.46 days, respectively… maybe they are not.

This synchronous state is reached after tidal dissipation slowed the rotation enough. Future measurements of the rotation of the two satellites could tell us something on the age of this ternary system.

And last year, an international team led by José Luis Ortiz (the same one) announced the discovery of a ring around Haumea.

Rings beyond Jupiter

In the Solar System, rings are known from the orbit of Jupiter, and beyond:

  • Jupiter has a system of faint rings,
  • should I introduce the rings of Saturn?
  • Uranus has faint rings, which were discovered in 1977,
  • the rings of Neptune were discovered in 1984, before being imaged by Voyager 2 in 1989. Interestingly, one of these rings, the Adams ring, contains arcs, i.e. zones in which the ring is denser. These arcs seem to be very stable, and this stability is not fully understood by now.
Arcs in the Adams ring (left to right: Fraternité, Égalité, Liberté), plus the Le Verrier ring on the inside. © NASA
Arcs in the Adams ring (left to right: Fraternité, Égalité, Liberté), plus the Le Verrier ring on the inside. © NASA

Surprisingly, we know since 2014 that small bodies beyond the orbit of Jupiter may have rings:

  • An international team detected rings around the Centaur Chariklo in 2014 (remember: a Centaur is a body, which orbits between the orbits of Jupiter and Neptune),
  • another team (with some overlaps with the previous one), discovered rings around Haumea in 2017,
  • observations in 2015 are consistent with ring material around the Centaur Chiron, but the results are not that conclusive.

These last discoveries were made thanks to stellar occultations: the object should occult a star, then several teams observe it from several locations. While the planetary object is too faint to be observed from Earth with classical telescopes, the stars can be observed. If at some point no light from the star is being recorded while the sky is clear, this means that it is occulted. And the spatial and temporal distributions of the recorded occultations give clues on the shape of the body, and even on the rings when present.

Why rings around dwarf planets?

Rings around giant planets orbit inside the Roche limit. Below this limit, a planetary object cannot accrete, because the intense gravitational field of the giant planet nearby would induce too much tidal stress, and prevent the accretion. But how can we understand rings around dwarf planets? Chiron presents some cometary activity, so the rings, if they exist, could be constituted of this ejected material. But understanding the behavior of dust around such a small object is challenging (partly because it is a new challenge).

In 2015, the American planetologist Matthew Hedman noticed that dense planetary rings had been only found between 8 and 20 AU, and proposed that the temperature of water ice in that area, which is close to 70 K (-203°C, -333°F), made it very weak and likely to produce rings. In other words, rings would be favored by the properties of the material. I find this explanation particularly interesting, since no ring system has been discovered in the Asteroid Main Belt. That paper was published before the discovery of rings around Haumea, which is far below the limit of 20 UA. I wonder how the Haumea case would affect these theoretical results.

In the specific case of Haumea, the ring has a width of 70 kilometers and a radius of about 2,287 kilometers, which makes it close to the 3:1 ground-track resonance, i.e. the particles constituting the ring make one revolution around Haumea, while Haumea makes 3 rotations.

Numerical simulations

Let us now focus of our study. The authors aimed at understanding the dynamics and stability of the discovered rings around Haumea. For that, they took different particles, initially on circular orbits around Haumea, at different distances, and propagated their motions.
Propagating their motions consists in using a numerical integrator, which simulates the motion in the future. There are powerful numerical tools which perform this task reliably and efficiently. These tools are classified following their algorithm and order. The order is the magnitude of the approximation, which is made at each timestep. A high order means a highly accurate simulation. Here, the authors used a fourth order Runge-Kutta scheme. It is not uncommon to see higher-order tools (orders between 8 and 15) in such studies. The motions are propagated over 1 to 1,000 years.

A gravitational and thermal physical model

The authors assumed the particles to be affected by

  • the gravitational field of Haumea, including its triaxiality. This is particularly critical to consider the ground-track resonances, while the actually observed ring is close to the 3:1 resonance,
  • the gravitational perturbation by the two small moons, Namaka and Hi’iaka,
  • the Solar radiation pressure.

This last force is not a gravitational, but a thermal one. It is due to an exchange of angular momentum between the particle, and the electromagnetic field, which is due to the Solar radiation. For a given particle size, the Solar radiation pressure has pretty the same magnitude for all of the particles, while the gravitational field of Haumea decreases with the distance. As a consequence, the furthest particles are the most sensitive to the radiation pressure. Moreover, this influence is inversely proportional to the grain size, i.e. small particles are more affected than the large ones.

And now, the results!

A probable excess of small particles

The numerical simulations show that the smaller the grains size, the narrower the final ring structure. The reason is that smaller particles will be ejected by the radiation pressure, unless they are close enough to Haumea, where its gravity field dominates.

And this is where you should compare the simulations with the observations. The observations tell you that the ring system of Haumea is narrow, this would be consistent with an excess of particles with grain size of approximately 1 μm.

So, such a study may constrain the composition of the rings, and may help us to understand its origin. Another explanation could be that there was originally no particle that far, but in that case you should explain why. Let us say that we have an argument for a ring essentially made of small particles.

The study and its authors

And that’s it for today! Please do not forget to comment. You can also subscribe to the RSS feed, and follow me on Twitter, Facebook, Instagram, and Pinterest.

The activity of Chiron

Hi there! You may have heard of Chiron, which was he first Centaur discovered, in 1977. This minor planet may have rings, and seems to present some cometary activity, which cause needs to be discussed. This is the topic of the present study, i.e. Activity of (2060) Chiron possibly caused by impacts?, by Stefan Cikota, Estela Fernández-Valenzuela, Jose Luis Ortiz, Nicolás Morales, René Duffard, Jesus Aceituno, Aleksandar Cikota and Pablo Santos-Sanz. This study has recently been accepted for publication in The Monthly Notices of the Royal Astronomical Society.

Chiron’s facts

Chiron was the first discovered Centaur, i.e. the first asteroid / small planet, which orbits between the orbits of Saturn and Uranus. It was discovered in 1977, in the sense that it was identified in 1977. But reexamination of past photographic plates show that it has in fact been observed since 1895. And from the reanalysis of the pre-discovery observations, it was easy to determine an orbit.

Discovery 1977
First observation 1895
Apparent magnitude 19
Absolute magnitude 6
Diameter 220 km
Semimajor axis 13.648 AU
Eccentricity 0.3823
Inclination 6.9497°
Orbital period 50.42 yr
Rotation 5.918 h

The orbital period of Chiron is a slightly longer than 50 years, which means that we dispose of astrometric observations over more than 2 periods. This orbit is highly eccentric, which results in large variations of the distance to the Sun, i.e. between 8.43 AU (astronomical units) at perihelion, and 18.86 AU at aphelion.

A spectral analysis of Chiron reveals a C-type, i.e. a carbonaceous, object. Moreover, it shows large variations of brightness, which are considered to be partly due to cometary activity, and partly due to rings. This cometary activity makes that Chiron, officially the asteroid (2060)Chiron, can also be called the comet 95P/Chiron.

Chiron observed at Kuma Kogen Astronomical Observatory, Japan. © 1997 by Akimasa Nakamura
Chiron observed at Kuma Kogen Astronomical Observatory, Japan. © 1997 by Akimasa Nakamura

The presence of rings around Chiron is not unanimously accepted in the scientific community. Unexpected stellar occultations by something orbiting close to Chiron could be interpreted either as cometary jets, or as rings. But the large variations of brightness and the discoveries of rings around Chariklo and Haumea speak for the presence of rings. The discovery of rings around Chariklo was very surprising, and showed that it is possible. The discovery around Haumea has shown that rings around such bodies were not exceptional. So, why not Chiron? In this study, the authors clearly state that they believe in the presence of rings, and they use it to study the brightness of Chiron. These rings would have a radius of 324 ± 10 km, which is inside the estimated Roche limit of Chiron, i.e. the particles constituting the rings could not accrete into a larger body.

But the central point is the cometary activity, i.e. evidence for cometary jets is reported.

Triggering a cometary activity

Classical comets behave this way: these are dirty snowballs, i.e. made of ice, dust, and some other elements. When approaching the Sun, the comet gets so warm that the ice is sublimated. But a Centaur with cometary activity is different, since it does not get closer to the Sun. Moreover, Chiron is essentially carbonaceous. So, another cause has to be found. And in such a case, it is often tempting to invoke impacts.

A problem is that impacts are not that frequent in that region of the Solar System. First because the gravitational action of the Sun tends to focus the orbits of the potential impactors, i.e. they will be more inclined to get closer to the Sun, and second because, the more distant from the Sun you are, the emptier the space appears, this is just a geometrical effect.
The consequences of these effects is that a collision of a 1km-radius comet is expected on a body like Chiron every 60 Gyr… while the age of the Solar System is 4.5 Gyr… quite unlikely.

Photometric observations

Anyway, Chiron is known to have some cometary activity, and the author tracked it from Calar Alto Observatory (CAHA) in Almeria, Spain, during 3 observation campaigns, between 2014 and 2016. The first campaign was primarily devoted to the study of the rotation of Chiron, and consisted of 3 runs in 2014, using the 3.5 and the 1.23 m telescopes. The second campaign was conducted in September 2015 on the 2.2 m telescope, with the CAFOS instrument (Calar Alto Faint Object Spectrograph), and looked for rotation, absolute magnitude, and cometary activity. The third campaign took place on 2016, September 2, to get a better constraint on Chiron’s absolute magnitude, once again with CAFOS.

The authors were particularly interested in the photometry, since cometary jets translate into variations of brightness. For that, they had to correct the variations due to observational constraints, and to the orientation of Chiron.

The 3.5m telescope at Calar Alto Observatory (CAHA). © Alfredo Madrigal
The 3.5m telescope at Calar Alto Observatory (CAHA). © Alfredo Madrigal

Observational constraints are likely to give artificial variations of photometry, since

  • the height of Chiron on the horizon varies, which means that the thickness of the atmosphere varies,
  • the wind might result in unstable images (seeing),
  • the detectors are different, even on the same instrument,etc.

To try to make things as proper as possible, the authors corrected the images from flat fielding, i.e. from the variations of the response of the CCD chip, and they observed a large enough field (at least 16 arcmin), to have the same stars as photometric references.

Regarding the orientation of Chiron, variations of brightness can reveal:

  • the rotation of Chiron, which would present different surface elements to the observer,
  • the orientation of the rings.

These two effects were modeled, to be removed from the photometric measurements. And the result is…

Impacts from the rings

The authors do observe a small cometary activity on Chiron, which is pretty faint. It has actually been stronger in the past, a measurement in 1973 showed a peak with respect to another measurement in 1970, and since then the coma is monotonously decreasing. The authors interpret that as a possible small impact having occurred between 1970 and 1973, the associated coma tail having almost disappeared. This activity appears to be supplemented by a continuous micro-activity, which could be due to impacts by small particles falling from the rings.

The study and its authors

And that’s it for today! Please do not forget to comment. You can also subscribe to the RSS feed, and follow me on Twitter, Facebook, Instagram, and Pinterest.

A constantly renewed ring of Saturn

Hi there! The outstanding Cassini mission ended last September with its Grand Finale, and it gave us invaluable data, which will still be studied for many years. Today I present you a study which has recently been published in The Astrophysical Journal: Particles co-orbital to Janus and Epimetheus: A firefly planetary ring, by a Brazilian team composed of Othon C. Winter, Alexandre P.S. Souza, Rafael Sfair, Silvia M. Giuliatti Winter, Daniela C. Mourão, and Dietmar W. Foryta. This study tells us how the authors characterized a dusty ring in the system of Saturn, studied its stability, and investigated its origin.

The rings of Saturn

As you may know, Saturn is the ringed planet, its rings being visible from Earth-based amateur telescopes. Actually, the 4 major planets of our Solar System have rings, and some dwarf planets as well, i.e. Chariklo, Haumea, and possibly Chiron. But Saturn is the only one with so dense rings. I summarize below the main relevant structures and distances, from the center of Saturn:

Distance Structure
60,268 km The atmospheric pressure of Saturn reaches 1 bar.
This is considered as the equatorial radius of Saturn.
66,900 – 74,510 km D Ring
74,658 – 92,000 km C Ring
92,000 – 117,580 km B Ring
117,580 – 122,170 km Cassini Division
122,170 – 136,775 km A Ring
133,589 km Encke Gap
140,180 km F Ring
151,500 km Orbits of Janus and Epimetheus
189,000 km Orbit of Mimas
1,222,000 km Orbit of Titan

The A and B Rings are the densest ones. They are separated by the Cassini Division, which appears as a lack of material. It actually contains some, arranged as ringlets, but they are very faint. The Encke Gap is a depletion of material as well, in which the small satellite Pan confines the boundaries. Here we are interested in a dusty ring enshrouding the orbits of Janus and Epimetheus, i.e. outside the dense rings. The discovery of this ring had been announced in 2006, this study reveals its characteristics.

The rings of Saturn seen by Cassini. From right to left: the A Ring with the Encke Gap, the Cassini Division, the B Ring, the C Ring, and the D Ring. © NASA
The rings of Saturn seen by Cassini. From right to left: the A Ring with the Encke Gap, the Cassini Division, the B Ring, the C Ring, and the D Ring. © NASA

Janus and Epimetheus

The two coorbital satellites Janus and Epimetheus are a unique case in the Solar System, since these are two bodies with roughly the same size (diameters: ~180 and ~120 km, respectively), which share the same orbit around Saturn. More precisely, they both orbit Saturn in 16 hours, i.e. at the same mean orbital frequency. This is a case of 1:1 mean-motion resonance, involving peculiar mutual gravitational interactions, which prevent them from colliding. They swap their orbits every four years, i.e. the innermost of the two satellites becoming the outermost. The amplitudes of these swaps (26 km for Janus and 95 for Epimetheus) have permitted to know accurately the mass ratio between them, which is 3.56, Janus being the heaviest one.

Interestingly, Epimetheus is the first among the satellites of Saturn for which longitudinal librations have been detected. As many natural satellites, Janus and Epimetheus have a synchronous rotation, showing the same face to a fictitious observer at the surface of Saturn. For Epimetheus, large librations have been detected around this direction, which are a consequence of its elongated shape, and could reveal some mass inhomogeneities, maybe due to variations of porosity, and/or to its pretty irregular shape.

Janus and Epimetheus seen by Cassini (mosaic of 2 images). © NASA
Janus and Epimetheus seen by Cassini (mosaic of 2 images). © NASA

Images of a new ring

So, Cassini images have revealed a dusty ring in that zone. To characterize it, the authors have first extracted images likely to contain it. Such images are made publicly available on NASA’s Planetary Data System. Since that ring had been announced to have been observed on Sept 15th 2006 (see the original press release), the authors restricted to 2 days before and after that date. The data they used were acquired by the ISS (Imaging Science Subsystem) instrument of Cassini, more precisely the NAC and WAC (Narrow- and Wide-Angle-Camera). They finally found 17 images showing the ring.

The images are given as raw data. The authors needed to calibrate their luminosity with a tool (a software) provided by the Cassini team, and sometimes to smooth them, to remove cosmic rays. Moreover, they needed to consider the position of the spacecraft, to be able to precisely locate the structures they would see.

One of the Cassini images used by the authors. I have added red stars at the location of the ring. © NASA / Ciclops
One of the Cassini images used by the authors. I have added red stars at the location of the ring. © NASA / Ciclops

It appears that the ring presents no longitudinal brightness variation. In other words, not only this is a whole ring and not just an arc, but no density variation is obvious. However, it presents radial brightness variations, over a width of 7,500 km, which is wider than the 5,000 km announced in the 2006 press release.

The next step is to understand the dynamics of this ring, i.e. its stability, its origin, the properties of the particles constituting it… Let us start with the stability.

The ring is removed in a few decades

The authors ran N-body simulations, i.e. numerical integrations of the equations ruling the motion of a ring particle, which would be gravitationally perturbed by the surrounding bodies, i.e. Saturn, and the Janus, Epimetheus, Mimas, Enceladus, Tethys, Dione, and Titan. Moreover, for a reason that I will tell you at the end of this article, the authors knew that the particles were smaller than 13 μm. The motions of such small particles are affected by the radiation pressure of the Sun, in other words the Solar light pushes the particles outward.

The authors simulated 14 times the motion of 18,000 particles equally distributed in the rings. Why 14 times? To consider different particle sizes, i.e. one set with 100 μm-sized particles, and the other sets with sizes varying from 1μm to 13μm.
And it appears that these particles collide with something in a few decades, mostly Janus or Epimetheus. This leaves two possibilities: either we were very lucky to be able to take images of the ring while it existed, or a process constantly feeds the ring. The latter option is the most probable one. Let us now discuss this feeding process.

Renewing the ring

The likeliest sources of material for the rings are ejecta from Janus and Epimetheus. The question is: how were these ejecta produced? By impacts, probably. This study show that Janus and Epimetheus are impacted by the particles constituting the rings, but the impact velocities would not permit to produce ejecta. This is why the authors propose a model, in which interplanetary particles collide with the satellites, generating ejecta.

A firefly behavior

And let us finish with something funny: the ring seems to behave like a firefly, i.e. sometimes bright, and sometimes dark, which means undetectable while present.
To understand what happens, figure out how the light would cross a cloud of particles. If the cloud is dense enough, then it would reflect the light, and not be crossed. But for dust, the light would be refracted, i.e. change its direction. This depends on the incidence angle of the Solar light, i.e. on the geometrical configuration of the Sun-Saturn-ring system. The Solar incidence angle is also called phase. And this phase changes with the orbit of Saturn, which results in huge brightness variations of the ring. Sometimes it can be detected, but most of the time it cannot. This can be explained and numerically estimated by the Mie theory, which gives the diffusion of light by small particles. This theory also explains the creation of rainbows, the Solar light being diffracted by droplets of water.

The study and its authors

And that’s it for today! Please do not forget to comment. You can also subscribe to the RSS feed, and follow me on Twitter and Facebook.

The mass of Cressida from Uranus’ rings

Hi there! Today I will present you a new way to weigh an inner satellite of a giant planet. This is the opportunity for me to present you Weighing Uranus’ moon Cressida with the η Ring by Robert O. Chancia, Matthew M. Hedman & Richard G. French. This study has recently been accepted for publication in The Astronomical Journal.

The inner system of Uranus

Uranus is known to be the third planet of the Solar System by its radius, the 4th by its mass, and the 7th by its distance to the Sun. It is also known to be highly tilted, its polar axis almost being in its orbital plane. You may also know that it has 5 major satellites (Ariel, Umbriel, Titania, Oberon, and Miranda), and that it has been visited by the spacecraft Voyager 2 in 1986. But here, we are interested in its inner system. If we traveled from the center of Uranus to the orbit of the innermost of its major satellites, i.e. Miranda, we would encounter:

  • At 25,559 km: the location where the atmosphere reaches the pressure 1 bar. This is considered to be the radius of the planet.
  • Between 37,850 and 41,350 km: the ζ Ring,
  • At 41,837 km: the 6 Ring,
  • At 42,234 km: the 5 Ring,
  • At 42,570 km: the 4 Ring,
  • At 44,718 km: the α Ring,
  • At 45,661 km: the β Ring,
  • At 47,175 km: the η Ring,
  • At 47,627 km: the γ Ring,
  • At 48,300 km: the δ Ring,
  • At 49,770 km: the satellite Cordelia (radius: 20 km),
  • At 50,023 km: the λ Ring,
  • At 51,149 km: the ε Ring
  • At 53,790 km: the satellite Ophelia (radius: 22 km),
  • At 59,170 km: the satellite Bianca (radius: 26 km),
  • At 61,780 km: the satellite Cressida (radius: 40 km),
  • At 62,680 km: the satellite Desdemona (radius: 34 km),
  • At 64,350 km: the satellite Juliet (radius: 47 km),
  • At 66,090 km: the satellite Portia (radius: 68 km),
  • Between 66,100 and 69,900 km: the ν Ring,
  • At 69,940 km: the satellite Rosalind (radius: 36 km),
  • At 74,800 km: the satellite Cupid (radius: 9 km),
  • At 75,260 km: the satellite Belinda (radius: 45 km),
  • At 76,400 km: the satellite Perdita (radius: 15 km),
  • At 86,010 km: the satellite Puck (radius: 81 km),
  • Between 86,000 and 103,000 km: the μ Ring,
  • In the μ Ring, at 97,700 km: the satellite Mab (radius: 13 km)
  • At 129,390 km: the satellite Miranda (radius: 236 km).

The rings of Uranus are being discovered since 1977. Originally it was from star occultations observed from the Earth. Then Voyager 2 visited Uranus in 1986, which revealed other rings, and more recently the Hubble Space Telescope imaged some of them, permitting other discoveries.. Most of them have a width of ≈1 km.
All of the inner moons have been discovered on Voyager 2 images, except Cupid and Mab, which have been discovered in 2003, once more thanks to Hubble. On the contrary, the major moons have been discovered between 1787 and 1948.

Today we will focus only on

  • At 47,175 km: the η Ring,
  • At 61,780 km: the satellite Cressida (radius: 40 km).

The η Ring is very close to the 3:2 mean-motion resonance (MMR) with Cressida, which means that any particle of the η Ring makes 3 revolutions around Uranus while Cressida makes 2. As a consequence, Cressida has a strong gravitational action on the η Ring.

Gravitational interactions

How do we know the mass of planetary bodies? When we send a spacecraft close enough, the spacecraft is deviated, and from the deviation we have the gravity field, or at least the mass. If we cannot send a spacecraft, then we can invert, i.e. analyze, the interactions between different bodies. We know the mass of the Sun thanks to the orbits of the planets, we know the mass of Jupiter thanks to the orbits of its satellites, and the deviations of the spacecraft. We can also use MMR. For instance, in the system of Saturn, the mass ratios between Mimas and Tethys, between Enceladus and Dione, and between Janus and Epimetheus, were accurately known before the arrival of Cassini, thanks to resonant relations.

We can have resonant interactions between a satellite and a ring, as well. A ring is actually a cloud of small particles, and the way their motion is affected reveals the gravitational interaction with something. When you have a MMR, then the ring exhibits streamlines, which give a pattern with equally spaced corners. From the number of these corners you can determine the MMR involved, and from the size of the pattern you get the mass of the disturbing satellite. This is exactly what happens here, i.e. 3:2 MMR with Cressida affects the η Ring in such a way that you can read the mass of Cressida from the shape of this ring. But for that, you need to be accurate enough on the location of the ring.

The data

The authors used 49 observations, including 3 Voyager 2 ones, the other ones being star occultations by rings. Such an observation should be anticipated, i.e. the relative position of Uranus with respect to thousands of stars is calculated, then the star has to be observed where possible, i.e. in a place where it will be high enough in the sky, and of course at night. You measure the light flux coming from the star, which should be pretty constant… and is not because of the variability of the atmospheric thickness since the star is moving in the sky (remember: the Earth rotates in one day), so you have to compensate with other stars… and if you detect a flux drop, then this means that something is occulting the star. Possibly a ring.
Most of the observations were made in the K band, i.e. at an infrared wavelength of 2.2 μm, where Uranus is fainter than its rings. These observations have been made between 1977 and 1996. Since then, the opening of the rings is too small, i.e. we see Uranus by the edge, which reduces the chances to occult a star.

Methodology

The authors made a least-square fit. This means that they fitted their corpus of observations with a shape of the ring as R-A cos (mθ), where R is a constant radius, A is an amplitude of distortion of the ring, θ is the angle (a longitude), and m is a factor giving the frequency of the distortion, which could be related to its cause, i.e. the orbital motion of the satellite affecting the ring. You fit R, A and m, i.e. you adjust them so as to reduce the difference (the error, which is mathematically seen as a distance) between your model and the observations. From R you have a ring (and you can check whether there should be a ring there), from A you have the mass of the satellite, and from m and have its frequency (and you can check whether a known satellite has this frequency).
The authors show that the highest effect of the inner satellites on the rings should be the effect of Cressida on the η Ring, thanks to the 3:2 MMR.

Results

The authors find that Cressida should have a density of 0.86±0.16 g.cm-3, which is lighter than water. Usually these bodies are supposed to be kind of porous dirty ice, which would mean this kind of density. This is the first measurement of the density of an inner satellite of Uranus. A comparison with other systems shows that this is much denser than the inner satellites of Saturn. However, the inner satellite of Jupiter Amalthea has a pretty similar density.

Finally the authors say that they used this method on other rings, and that additional results should be expected, so we stay tuned. They also say that a spacecraft orbiting Uranus would help knowing these satellites. I cannot agree more. Some years ago, a space mission named Uranus Pathfinder has been proposed to ESA, and another one, named Uranus orbiter and probe, has been proposed to NASA.

The study and the authors

That’s it for today! Please do not forget to comment. You can also subscribe to the RSS feed, and follow me on Twitter and Facebook.

The fate of the Alkyonides

Hello everybody! Today, I will tell you on the dynamics of the Alkyonides. You know the Alkyonides? No? OK… There are very small satellites of Saturn, i.e. kilometer-sized, which orbit pretty close to the rings, but outside. These very small bodies are known to us thanks to the Cassini spacecraft, and a recent study, which I present you today, has investigated their long-term evolution, in particular their stability. Are they doomed or not? How long can they survive? You will know this and more after reading this presentation of Long-term evolution and stability of Saturnian small satellites: Aegaeon, Methone, Anthe, and Pallene, by Marco Muñoz-Gutiérrez and Silvia Giuliatti Winter. This study has recently been accepted for publication in The Monthly Notices of the Royal Astronomical Society.

The Alkyonides

As usually in planetary sciences, bodies are named after the Greek mythology, which is the case of the four satellites discussed today. But I must admit that I cheat a little: I present them as Alkyonides, while Aegeon is actually a Hecatoncheires. The Alkyonides are the 7 daughters of Alcyoneus, among them are Anthe, Pallene, and Methone.

Here are some of there characteristics:

Methone Pallene Anthe Aegaeon
Semimajor axis 194,402 km 212,282 km 196,888 km 167,425 km
Eccentricity 0 0.004 0.0011 0.0002
Inclination 0.013° 0.001° 0.015° 0.001°
Diameter 2.9 km 4.4 km 2 km 0.66 km
Orbital period 24h14m 27h42m 24h52m 19h24m
Discovery 2004 2004 2007 2009

For comparison, Mimas orbits Saturn at 185,000 km, and the outer edge of the A Ring, i.e. of the main rings of Saturn, is at 137,000 km. So, we are in the close system of Saturn, but exterior to the rings.

Discovery of Anthe, aka S/2007 S4. Copyright: NASA.
Discovery of Anthe, aka S/2007 S4. Copyright: NASA.

These bodies are in mean-motion resonances with main satellites of Saturn, more specifically:

  • Methone orbits near the 15:14 MMR with Mimas,
  • Pallene is close to the 19:16 MMR with Enceladus,
  • Anthe orbits near the 11:10 MMR with Mimas,
  • Aegaeon is in the 7:6 MMR with Mimas.

As we will see, these resonances have a critical influence on the long-term stability.

Rings and arcs

Beside the main and well-known rings of Saturn, rings and arcs of dusty material orbit at other locations, but mostly in the inner system (with the exception of the Phoebe ring). In particular, the G Ring is a 9,000 km wide faint ring, which inner edge is at 166,000 km… Yep, you got it: Aegaeon is inside. Some even consider it is a G Ring object.

Methone and Anthe have dusty arcs associated with them. The difference between an arc and a ring is that an arc is longitudinally bounded, i.e. it is not extended enough to constitute a ring. The Methone arc extends over some 10°, against 20° for the Anthe arc. The material composing them is assumed to be ejecta from Methone and Anthe, respectively.

However, Pallene has a whole ring, constituted from ejecta as well.

Why sometimes a ring, and sometimes an arc? Well, it tell us something on the orbital stability of small particles in these areas. Imagine you are a particle: you are kicked from home, i.e. your satellite, but you remain close to it… for some time. Actually you drift slowly. While you drift, you are somehow shaken by the gravitational action of the other satellites, which disturb your Keplerian orbit around the planet. If you are shaken enough, then you may leave the system of Saturn. If you are not, then you can finally be anywhere on the orbit of your satellite, and since you are not the only one to have been ejected (you feel better, don’t you?), then you and your colleagues will constitute a whole ring. If you are lucky enough, you can end up on the satellite.

The longer the arc (a ring is a 360° arc), the more stable the region.

Frequency diffusion

The authors studied

  1. the stability of the dusty particles over 18 years
  2. the stability of the satellites in the system of Saturn over several hundreds of kilo-years (kyr).

For the stability of the particles, they computed the frequency diffusion index. It consists in:

  1. Simulating the motion of the particles over 18 years,
  2. Determining the main frequency of the dynamics over the first 9 years, and over the last 9 ones,
  3. Comparing these two numbers. The smaller the difference, the more stable you are.

The numerical simulations is something I have addressed in previous posts: you use a numerical integrator to simulate the motion of the particle, in considering an oblate Saturn, the oblateness being mostly due to the rings, and several satellites. Our four guys, and Janus, Epimetheus, Mimas, Enceladus, and Tethys.

How resonances destabilize an orbit

When a planetary body is trapped in a mean-motion resonance, there is an angle, which is an integer combination of angles present in its dynamics and in the dynamics of the other body, which librates. An example is the MMR Aegaeon-Mimas, which causes the angle 7λMimas-6λAegaeonMimas to librate. λ is the mean longitude, and ϖ is the longitude of the pericentre. Such a resonance is supposed to affect the dynamics of the two satellites but, given their huge mass ratio (Mimas is between 300 and 500 millions times heavier than Aegaeon), only Aegaeon is affected. The resonance is at a given location, and Aegaeon stays there.
But a given resonance has some width, and several resonant angles (we say arguments) are associated with a resonance ratio. As a consequence, several resonances may overlap, and in that case … my my my…
The small body is shaken between different locations, its eccentricity and / or inclination can be raised, until being dynamically unstable…
And in this particular region of the system of Saturn, there are many resonances, which means that the stability of the discovered body is not obvious. This is why the authors studied it.

Results

Stability of the dusty particles

The authors find that Pallene cannot clear its ring efficiently, despite its size. Actually, this zone is the most stable, wrt the dynamical environments of Anthe, Methone and Aegaeon. However, 25% of the particles constituting the G Ring should collide with Aegaeon in 18 years. This probably means that there is a mechanism, which refills the G Ring.

Stability of the satellites

From long-term numerical simulations over 400 kyr, i.e. more than one hundred millions of orbits, these 4 satellites are stable. For Pallene, the authors guarantee its stability over 64 Myr. Among the 4, this is the furthest satellite from Saturn, which makes it less affected by the resonances.

A perspective

The authors mention as a possible perspective the action of the non-gravitational forces, such as the solar radiation pressure and the plasma drag, which could affect the dynamics of such small bodies. I would like to add another one: the secular tides with Saturn, and the pull of the rings. They would induce drifts of the satellites, and of the resonances associated. The expected order of magnitude of these drifts would be an expansion of the orbits of a few km / tens of km per Myr. This seems pretty small, but not that small if we keep in mind that two resonances affecting Methone are separated by 4 km only.

This means that further results are to be expected in the upcoming years. The Cassini mission is close to its end, scheduled for 15 Sep 2017, but we are not done with exploiting its results!

To know more…

That’s it for today! Please do not forget to comment. You can also subscribe to the RSS feed, and follow me on Twitter and Facebook.