Tag Archives: Rotation

On the interior of Mimas, aka the Death Star

Hi there! Today I will tell you on the interior of Mimas. You know, Mimas, this pretty small, actually the smallest of the mid-sized, satellite of Saturn, which has a big crater, like Star Wars’ Death Star. Despite an inactive appearance, it presents confusing orbital quantities, which could suggest interesting characteristics. This is the topic of the study I present you today, by Marc Neveu and Alyssa Rhoden, entitled The origin and evolution of a differentiated Mimas, which has recently been published in Icarus.

Mimas’ facts

The system of Saturn is composed of different groups of satellites. You have

  • Very small satellites embedded into the rings,
  • Mid-sized satellites orbiting between the rings and the orbit of Titan
  • The well-known Titan, which is very large,
  • Small irregular satellites, which orbit very far from Saturn and are probably former asteroids, which had been trapped by Saturn,
  • Others (to make sure I do not forget anybody, including the coorbital satellites of Tethys and Dione, Hyperion, the Alkyonides, Phoebe…).

Discovered in 1789 by William Herschel, Mimas is the innermost of the mid-sized satellites of Saturn. It orbits it in less than one day, and has strong interactions with the rings.

Semimajor axis 185,520 km
Eccentricity 0.0196
Inclination 1.57°
Diameter 396.4 km
Orbital period 22 h 36 min

As we can see, Mimas has a significant eccentricity and a significant inclination. This inclination could be explained by a mean-motion resonance with Tethys (see here). However, we see no obvious cause for its present eccentricity. It could be due to a past gravitational excitation by another satellite.

Mimas, seen by Cassini. We can the crater Herschel, which makes Mimas look like Star Wars' Death Star. Credit: NASA
Mimas, seen by Cassini. We can the crater Herschel, which makes Mimas look like Star Wars' Death Star. Credit: NASA

The literature is not unanimous on the formation of Mimas. It was long thought that the satellites of Saturn formed simultaneously with the planet and the rings, in the proto-Saturn nebula. The Cassini space mission changed our view of this system, and other scenarios were proposed. For instance, the mid-sized satellites of Saturn could form from the collisions between 4 big progenitors, Titan being the last survivor of them. The most popular explanation seems to be that a very large body impacted Saturn, its debris coalesced into the rings, and then particles in the rings accreted, forming satellites which then migrated outward… these satellites being the mid-sized satellites, i.e. Rhea, Dione, Tethys, Enceladus, and Mimas. This scenario would mean that Mimas would be the youngest of them, and that it formed differentiated, i.e. that the proto-Mimas was made of pretty heavy elements, on which lighter elements accreted. Combining observations of Mimas with theoretical studies of its long-term evolution could help to determine which of these scenarios is the right one… if there is a right one. Such studies can of course involve other satellites, but this one is essentially on Mimas, with a discussion on Enceladus at the end.

The rotation of Mimas

As most of the natural satellites of the giant planets, Mimas is synchronous, i.e. it shows the same face to Saturn, its rotational (spin) period being on average equal to its orbital one. “On average” means that there are some variations. These are actually a sum of periodic oscillations, which are due to the variations of the distance Mimas-Saturn. And from the amplitude and phase of these variations, you can deduce something on the interior, i.e. how the mass is distributed. This could for instance reveal an internal ocean, or something else…

This rotation has been measured in 2014 (see this press release). The mean rotation is indeed synchronous, and here are its oscillations:

Period Measured
amplitude (arcmin)
Theoretical
amplitude (arcmin)
70.56 y 2,616.6 2,631.6±3.0
23.52 y 43.26 44.5±1.1
22.4 h 26.07 50.3±1.0
225.04 d 7.82 7.5±0.8
227.02 d 3.65 2.9±0.9
223.09 d 3.53 3.3±0.8

The most striking discrepancy is at the period 22.4 h, which is the orbital period of Mimas. These oscillations are named diurnal librations, and their amplitude is very sensitive to the interior. Moreover, the amplitude associated is twice the predicted one. This means that the interior, which was hypothesized for the theoretical study, is not a right one, and this detection of an error is a scientific information. It means that Mimas is not exactly how we believed it is.

The authors of the 2014 study, led by Radwan Tajeddine, investigated 5 interior models, which could explain this high amplitude. One of these models considered the influence of the large impact crater Herschel. In all of these models, only 2 could explain this high amplitude: either an internal ocean, or an elongated core of pretty heavy elements. Herschel is not responsible for anything in this amplitude.

The presence of an elongated core would support the formation from the rings. However, the internal ocean would need a source of heating to survive.

Heating Mimas

There are at least three main to heat a planetary body:

  1. hit it to heat it, i.e. an impact could partly melt Mimas, but that would be a very intense and short heating, which would have renewed the surface…nope
  2. decay of radiogenic elements. This would require Mimas to be young enough
  3. tides: i.e. internal friction due to the differential attraction of Saturn. This would be enforced by the variations of the distance Saturn-Mimas, i.e. the eccentricity.

And this is how we arrive to the study: the authors simulated the evolution of the composition of Mimas under radiogenic and tidal heating, in also considering the variations of the orbital elements. Because when a satellite heats, its eccentricity diminishes. Its semimajor axis varies as well, balanced between the dissipation in the satellite and the one in Saturn.

The problems

For a study to be trusted by the scientific community, it should reproduce the observations. This means that the resulting Mimas should be the Mimas we observe. The authors gave themselves 3 observational constraints, i.e. Mimas must

  1. have the right orbital eccentricity,
  2. have the right amplitude of diurnal librations,
  3. keep a cold surface.

and they modeled the time evolution of the structure and the orbital elements using a numerical code, IcyDwarf, which simulates the evolution of the differentiation, i.e. separation between rock and water, porosity, heating, freezing of the ocean if it exists…

Results

The authors show that in any case, the ocean cannot survive. If there would be a source of heating sustaining it, then the eccentricity of Mimas would have damped. In other words, you cannot have the ocean and the eccentricity simultaneously. Depending on the past (unknown) eccentricity of Mimas and the dissipation in Saturn, which is barely known, an ocean could have existed, but not anymore.
As a consequence, Mimas must have an elongated core, coated by an icy shell. The eccentricity could be sustained by the interaction with Saturn. This elongated core could have two origins: either a very early formation of Mimas, which would have given enough time for the differentiation, or a formation from the rings, which would have formed Mimas differentiated.

Finally the authors say that there model does not explain the internal ocean of Enceladus, but Marc Neveu announces on his blog that they have found another explanation, which should be published pretty soon. Stay tuned!

Another mystery

The 2014 study measured a phase shift of 6° in the diurnal librations. This is barely mentioned in the literature, probably because it bothers many people… This is huge, and could be more easily, or less hardly, explained with an internal ocean. I do not mean that Mimas has an internal ocean, because the doubts regarding its survival persist. So, this does not put the conclusions of the authors into question. Anyway, if one day an explanation would be given for this phase lag, that would be warmly welcome!

To know more…

That’s it for today! Please do not forget to comment. You can also subscribe to the RSS feed, and follow me on Twitter and Facebook.

Measuring the tides of Mercury

Hi there! I have already told you about the tides. If you follow me, you know that the tides are the deformations of a planet from the gravitational action of its parent star (the Sun for Mercury), and that a good way to detect them is to measure the variations of the gravity field of a planet from the deviations of a spacecraft orbiting it. From periodic variations we should infer a coefficient k2, known as the potential Love number, which represents the response of the planet to the tides…

That’s all for today! Please feel free to comment… blablabla…

Just kidding!

Today, I will tell you about another way to measure the tides, from the rotation of Mercury. For this, I will present you a study entitled Periodic and quasi-periodic attractors for the spin-orbit evolution of Mercury with a realistic tidal torque, which was recently published in The Monthly Notices of the Royal Astronomical Society. This is a collaboration between English and Italian mathematicians, i.e. Michele Bartuccelli, Jonathan Deane, and Guido Gentile. In planetary sciences mathematics can lead to new discoveries. In this case, the idea is: tides slow down the rotation of a planetary body, which eventually reaches an equilibrium rotation (or spin). For the Moon, the equilibrium is the synchronous rotation, while for Mercury it is the 3:2 spin-orbit resonance. Very well. A very good way to describe this final state is to describe the equilibrium rotation, i.e. in considering that the tides do not affect the spin anymore. But this is just an approximation. The tides are actually still active, and they affect the final state. In considering it, the authors show that the variations of the spin rate of Mercury should be composed of at least two sinusoids, i.e. two periodic effects, the superimposition of these two periods being quasi-periodic… you now understand the title.

The rotation of Mercury

I have already presented you Mercury here. Mercury is the innermost planet of the Solar System, with a semimajor axis which is about one third of the one of the Earth, i.e. some 58 million km, and a surprisingly large orbital eccentricity, which is 0.206. These two elements favor a spin-orbit resonance, i.e. the rotation rate of Mercury is commensurate with its orbital rate. Their ratio is 3/2, Mercury performing a revolution about the Sun in 88 days, while a rotation period is 58 days. You can notice a 3/2 ratio between these two numbers.

The 3:2 spin-orbit resonance of Mercury
The 3:2 spin-orbit resonance of Mercury

Why is this configuration possible as an equilibrium state? If you neglect the dissipation (the authors do not) and the obliquity (the authors do, and they are probably right to do it), you can write down a second-degree ODE (ordinary differential equation), which rules the spin. In this equation, the triaxiality of Mercury plays a major role, i.e. Mercury spins the way it spins because it is triaxial. Another reason is its orbital eccentricity. This ODE has equilibriums, i.e. stable spin rates, among them is the 3:2 spin-orbit resonance.

And what about the obliquity? It is actually an equilibrium as well, known as Cassini State 1, in which the angular momentum of Mercury is tilted from the normal to its orbit by 2 arcminutes. This tilt is a response to the slow precessing motion (period: 300,000 years) of the orbit of Mercury around the Sun.

Let us forget the obliquity. There are several possible spin-orbit ratios for Mercury.

Possible rotation states

If you went back to the ODE which rules the spin-rate of Mercury, you would see that there are actually several equilibrium spin rates, which correspond to p/2 spin-orbit resonances, p being an integer. Among them are the famous synchronous resonance 1:1 (p=2), the present resonance of Mercury (p=3), and other ones, which have never been observed yet.

If we imagine that Mercury initially rotated pretty fast, then it slowed down, and crossed several resonances, e.g. the 4:1, the 7:2, 3:1, 5:2, 2:1… and was trapped in none of them, before eventually being trapped in the present 3:2 one. Or we can imagine that Mercury has been trapped for instance in the 2:1 resonance, and that something (an impact?) destabilized the resonance…
And what if Mercury had been initially retrograde? Why not? Venus is retrograde… In that case, the tides would have accelerated Mercury, which would have been trapped in the synchronous resonance, which is the strongest one. This would mean that this synchronous resonance would have been destabilized, to allow trapping into the 3:2 resonance. Any worthwhile scenario of the spin evolution of Mercury must end up in the 3:2 resonance, since it is the current state. The scenario of an initially retrograde Mercury has been proposed to explain the hemispheric repartition of the observed impacts, which could be a signature of a past synchronous rotation. Could be, but is not necessarily. Another explanation is that the geophysical activity of Mercury would have renewed the surface of only one hemisphere, making the craters visible only on the other part.

Anyway, whatever the past of Mercury, it needed a dissipative process to end up in an equilibrium state. This dissipative process is the tides, assisted or not by core-mantle friction.

The tides

Because of the differential attraction of the Sun on Mercury, you have internal friction, i.e. stress and strains, which dissipate energy, and slow down the rotation. This dissipation is enforced by the orbital eccentricity (0.206), which induces periodic variations of the Sun-Mercury distance.
An interesting question is: how does the material constituting Mercury react to the tides? A critical parameter is the tidal frequency, i.e. the way you dissipates depends on the frequency you shake. A derivation of the tidal torque raised by the Sun proves to be a sum of periodic excitations, one of them being dominant in the vicinity of a resonance. This results in an enforcement of all the spin-orbit resonances, which means that a proper tidal model is critical for accurate simulations of the spin evolution.
A pretty common way to model the tides is the Maxwell model: you define a Maxwell time, which is to be compared with the period of the tidal excitation (the shaking). If your excitation is slow enough, then you will have an elastic deformation, i.e. Mercury will have the ability to recover its shape without loss of energy. However, a more rapid excitation will be dissipative. Then this model can be improved, or refined, in considering more dissipation at high frequencies (Andrade model), or grain-boundary slip (Burgers model)… There are several models in the literature, which are supported by theoretical considerations and lab experiments. Choosing the appropriate one depends on the material you consider, under which conditions, i.e. pressure and temperature, and the excitation frequencies. But in any case, these physically realistic tidal models will enforce the spin-orbit resonances.

Considering only the tides assumes that your body is (almost) homogeneous. Mercury has actually an at least partially molten outer core, i.e. a global fluid layer somewhere in its interior. This induces fluid-solid boundaries, the outer one being called CMB, for core-mantle boundary, and you can have friction there. The authors assumed that the CMB was formed after the trapping of Mercury into its present 3:2 spin-orbit resonance, which is supported by some studies. This is why they neglected the core-mantle friction.

This paper

This paper is part of a long-term study on the process of spin-orbit resonance. The authors studied the probabilities of capture (when you slow down until reaching a spin-orbit resonance, will you stay inside or leave it, still slowing down?), proposed numerical integrators adapted to this problem…
In this specific paper, they write down the ODE ruling the dynamics in considering the frequency-dependent tides (which they call realistic), and solve it analytically with a perturbation method, i.e. first in neglecting a perturbation, that they add incrementally, to eventually converge to the real solution. They checked their results with numerical integrations, and they also studied the stability of the solutions (the stable solutions being attractors), and the probabilities of capture.

In my opinion, the main result is: the stable attractor is not periodic but quasi-periodic. Fine, but what does that mean?

If we neglect the influence of the other planets, then the variations of the spin rate of Mercury is expected to be a periodic signal, with a period of 88 days. This is due to the periodic variations of the Sun-Mercury distance, because of the eccentricity. This results in longitudinal librations, which are analogous to the librations of the Moon (we do not see 50% of the surface of the Moon, but 59%, thanks to these librations). The authors say that this solution is not stable. However, a stable solution is the superimposition of these librations with a sinusoid, which period is close to 15 years, and an amplitude of a few arcminutes (to be compared to 15 arcminutes, which is the expected amplitude of the 88-d signal). So, it is not negligible, and this 15-y period is the one of the free (or proper) oscillations of Mercury. A pendulum has a natural frequency of oscillations, here this is exactly the same. But contrarily to a pendulum, the amplitude of these oscillations does not tend to 0. So, we could hope to detect it, which would be a direct observation of the tidal dissipation.

Measuring the rotation

What can we observe? We should first keep in mind that the authors addressed the early Mercury, when being trapped into the 3:2 spin-orbit resonance, which was pretty homogeneous. The current Mercury has a global fluid layer, which means a larger (about twice) amplitude of the 88-d signal, and a different dissipative process, the tides being assisted by core-mantle friction. As a consequence, there is no guarantee that the 15-y oscillation (actually a little shorter, some 12 years, because of the fluid core) would still exist, and that would require a dedicated study. But measuring it would be an information anyway.

How to measure it? The first observations of the rotation of Mercury in 1965 and of the librations in 2007 were Earth-based, radar observations, which are sensitive to the velocity. This means that they are more likely to detect a rapid oscillation (88 d, e.g.) than a slow one (12 years…). Observations of the surface of Mercury by the spacecraft MESSENGER confirmed those measurements. In 2018 the ESA/JAXA (Europe / Japan) joint mission Bepi-Colombo will be sent to Mercury, for orbital insertion in 2025 and hopefully a 2-y mission, with a better accuracy than MESSENGER. So, we could hope a refinement of the measurements of the longitudinal motion.

Purple: The 88-d oscillation. Green: Superimposed with the 15-y one. Keep in mind that Bepi-Colombo will orbit Mercury during some 2 years.
Purple: The 88-d oscillation. Green: Superimposed with the 15-y one. Keep in mind that Bepi-Colombo will orbit Mercury during some 2 years.

To know more

That’s it for today! Please do not forget to comment. You can also subscribe to the RSS feed, and follow me on Twitter and Facebook.

Tilting and retilting our Moon

Hi there! The Moon is so close and so familiar to us, but I realize this is my first post on it. Today I present you a paper entitled South Pole Aitken Basin magnetic anomalies: Evidence for the true polar wander of Moon and a lunar dynamo reversal, by Jafar Arkani-Hamed and Daniel Boutin, which will be published soon in Journal of Geophysical Research: Planets. The idea is to track the variations of the magnetic field of the Moon along its history, as a signature of the motion of its rotation pole, i.e. of a polar wander.

Our Moon’s facts

The Moon is a fascinating object, as it is the only known natural satellite of the Earth, and we see it as large as the Sun in our sky. It orbits around the Earth at a distance of almost 400,000 km in 27.3 days. It shows us always the same face, as a result of a tidal locking of its rotation, making it synchronous, i.e. its spin period is equal to its orbital period.

Moonset over Paris, France. Copyright: Josselin Desmars.

Something interesting is its pretty large size, i.e. its radius is one fourth of the one of the Earth. It is widely admitted that the Moon and the Earth have a common origin, i.e. either a proto-Earth has been impacted by a Mars-sized impactor, which split it between the Earth and the Moon, or the Earth-Moon system results from the collision of two objects of almost the same size. In both cases, the Earth and the Moon would have been pretty hot just after the impact, which also means active… and this has implications for the magnetic field.

A very weak magnetic field has been detected for the Moon, but which is very different from the Earth’s. The magnetic field of the Earth, or geomagnetic field, has the signature of a dipolar one, in the sense that it has a clear orientation. This happens when the rotating core acts as a dynamo. The north magnetic pole is some 10° shifted from the spin pole of the Earth, and has an amplitude between 25 and 65 μT (micro-teslas). However, the magnetic field of the Moon, measured at its surface, does not present a clear orientation, and never reaches 1 μT. Its origin is thus not obvious, even if we could imagine that the early Moon was active enough to harbor a dynamo, from which the measured magnetic field would be a signature… But the absence of preferred orientation is confusing.

The core dynamo

The core of the Earth spins, it is surrounded by liquid iron, which is conductive, and there is convection in this fluid layer, which is driven by the heat flux diffusing from the core to the surface of the Earth. This process creates and maintains a magnetic field.

For the Earth, the core dynamo is assumed to account for 80 to 90% of the total magnetic field. This results in a preferred orientation. Other processes that could create a magnetic field are a global asymmetry of the electric charges of the planet, or the presence of an external magnetic field, for instance due to a star.

A dynamo could be expected for many planetary objects, which would be large enough to harbor a global fluid layer. It is usually thought that the detection of a magnetic field is a clue for the presence of a global ocean. Such a magnetic field has been detected for Jupiter’s moon Ganymede, which is probably due to an outer liquid layer coating its iron core.

The Moon has probably no dynamo, but could have had one in the past. The measured magnetic field could be its signature. A question is: what could have driven this dynamo? The early Moon was hotter than the current one, so a magnetic field existed at that time. And after that, the Moon experienced intense episodes of bombardment, like the Late Heavy Bombardment. The resulting impacts affected the orientation of the Moon, its shape, and also its temperature. This could have itself triggered a revival of the magnetic field, particularly for the biggest impact.

The study I present today deals with measurements of the magnetic field in the South Pole-Aitken Basin, not to be confused with the Aitken crater, which is present in its region. The South Pole-Aitken Basin is one of the largest known impact crater in the Solar System, with a diameter of 2,500 km and a depth of 13 km. This basin contains other craters, which means that it is older than all of them, its age is estimated to be 4.1 Gyr (gigayears, i.e. billions of years). Measurements of the magnetic field in each of these craters could give its evolution over the ages. But why is it possible?

The magnetic field as a signature of the history

When a material is surrounded by a magnetic field, it can become magnetic itself. This phenomenon is known as induced magnetization, and depends on the magnetic susceptibility of the material, i.e. the efficiency of this process depends on the material. Once the surrounding magnetic field has disappeared, the material might remain magnetic anyway, i.e. have its remanent magnetic field. This is what has been measured by the Lunar Prospector mission, whose data originated this study.
An issue is the temperature. The impact should be hot enough to trigger the magnetic field, which implies that the material would be hot, but it cannot be magnetized if it is too hot. Below a Curie temperature, the process of induced magnetization just does not work. You can even demagnetize a material in heating it. For the magnetite, which is a mineral containing iron and present on the Moon, the Curie temperature is 860 K, i.e. 587°C, or 1089°F.

Lunar Prospector

This study uses data of the Lunar Prospector mission. This NASA mission has been launched in January 1998 from Cape Canaveral and has orbited the Moon on a polar orbit during 18 months, until July 1999. It made a full orbit in a little less than 2 hours, at a mean altitude of 100 km (60 miles). This allowed to cover the whole surface of the Moon, and to make measurements with 6 instruments, related to gamma rays, electrons, neutrons, gravity… and the magnetic field.

Results of this study

This study essentially consists of two parts: a theoretical study of the temperature evolution of the Moon over its early ages, including after impacts, and the interpretation of the magnetic field data. These data are 14 magnetic anomalies in the South Pole-Aitken Basin, which the theoretical study helps to date. And the data show two orientations of the magnetic field in the magnetic in the past, giving an excursion of more than 100° over the ages.

Now, if we consider that in the presence of a core dynamo, the magnetic field should be nearly aligned with the spin pole, this means that the Moon has experienced a polar wander of more than 100° in its early life. More precisely, the two orientations are temporally separated by the creation of the Imbrium basin, 3.9 Gyr ago. In other words, the Moon has been tilted. This is not the only case in the Solar System, see e.g. Enceladus.

To know more

And that’s it for today! Please do not forget to comment. You can also subscribe to the RSS feed, and follow me on Twitter and Facebook.

An asteroid pair

Hi there! Today I present you the study of an asteroid pair. Not a binary, a pair. A binary asteroid is a couple of asteroids which are gravitationally bound, while in pair, the asteroids are just neighbors, they do not live together… but have. The study is entitled Detailed analysis of the asteroid pair (6070) Rheinland and (54287) 2001 NQ8, by Vokrouhlický et al., and it has recently been published in The Astronomical Journal.

Asteroid pairs

I have presented asteroid families in a previous post. These are groups of asteroids which present common dynamical and physical properties. They can be in particular identified from the clustering of their proper elements, i.e. you express their orbital elements (semimajor axis, eccentricity, inclination, pericentre, …), you treat them properly so as to get rid off the gravitational disturbance of the planets, and you see that some of these bodies tend to group. This suggests that they constitute a collisional family, i.e. they were a unique body in the past, which has been destroyed by collisions.
An asteroid pair is something slightly different, since these are two bodies which present dynamical similarities in their osculating elements, i.e. before denoising them from the gravitational attraction of the planets. Of course, they would present similarities in their proper elements as well, but the fact that similarities can be detected in the osculating elements means that they are even closer than a family, i.e. the separation occurred later. Families younger than 1 Myr (1 million of years) are considered to be very young; the pair I present you today is much younger than that. How much? You have to read me before.
A pair suggests that only two bodies are involved. This suggests a non-collisional origin, more particularly an asteroid fission.

Asteroid fission

Imagine an asteroid with a very fast rotation. A rotation so fast that it would split the asteroid. We would then have two components, which would be gravitationally bound, and evolving… Depending on the energy involved, it could remain a stable binary asteroid, a secondary fission might occur, the two or three components may migrate away from each other… and in that case we would pair asteroid with very close elements of their heliocentric orbits.
It is thought that the YORP (Yarkovsky – O’Keefe – Radzievskii – Paddack) could trigger this rotational fission. This is a thermic effect which alter the rotation, and in some cases, in particular when the satellite has an irregular shape, it could accelerate it. Until fission.
Thermic effects are particularly efficient when the Sun is close, which means that NEA (Near Earth Asteroids) are more likely to be destroyed by this process than Main Belt asteroids. Here, we deal with Main Belt asteroids.

The pair 6070-54827 (Rheinland – 2001 NQ8)

The following table present properties of Rheinland and 2001 NQ8. The orbital elements are at Epoch 2458000.5, i.e. September 4th 2017. They come from the JPL Small-Body Database Browser.

(6070) Rheinland (54827) 2001 NQ8
Semimajor axis (AU) 2.3874015732216 2.387149297807496
Eccentricity 0.2114524962733347 0.211262507795103
Inclination 3.129675305535938° 3.128927421642917°
Node 83.94746016534368° 83.97704257098502°
Pericentre 292.7043398319871° 292.4915004062336°
Orbital period 1347.369277588708 d (3.69 y) 1347.155719572348 d (3.69 y)
Magnitude 13.8 15.5
Discovery 1991 2001

Beside their magnitudes, i.e. Rheinland is much brighter than 2001 NQ8, this is why it was discovered 10 years earlier, we can see that all the slow orbital elements (i.e. all of them, except the longitude) are very close, which strongly suggests they shared the same orbit. Not only their orbits have the same shape, but they also have the same orientation.

Shapes and rotations from lightcurves

A useful tool for determining the rotation and shape of an asteroid is the lightcurve. The object reflects the incident Solar light, and the way it reflects it will tell us something on its location, its shape, and its orientation. You can imagine that the surfaces of these bodies are not exclusively composed of smooth terrain, and irregularities (impact basins, mountains,…) will result in a different Solar flux, which also depends on the phase, i.e. the angle between the normale of the surface and the asteroid – Sun direction… i.e. depends whether you see the Sun at the zenith or close to the horizon. This is why recording the light from the asteroid at different dates tell us something. You can see below an example of lightcurve for 2001 NQ8.

Example of lightcurve for 2001 NQ8, observed by Vokrouhlický et al.

Recording such a lightcurve is not an easy task, since the photometric measurements should be denoised, otherwise you cannot compare them and interpret the lightcurve. You have to compensate for the variations of the luminosity of the sky during the observation (how far is the Moon?), of the thickness of the atmosphere (are we close to the horizon?), of the heterogeneity of the CCD sensors (you can compensate that in measuring the response of a uniform surface). And the weather should be good enough.

Once you have done that, you get a lightcurve alike the one above. We can see 3 maxima and 2 minima. Then the whole set of lightcurves is put into a computational machinery which will give you the parameters that best match the observations, i.e. periods of rotation, orientation of the spin pole at a given date, and shape… or at least a diameter. In this study, the authors already had the informations for Rheinland but confirmed them with new observations, and produced the diameter and rotation parameters for 2001 NQ8. And here are the results:

(6070) Rheinland (54827) 2001 NQ8
Diameter (km) 4.4 ± 0.6 2.2 ± 0.3
Spin period (h) 4.2737137 ± 0.0000005 5.877186 ± 0.000002
Spin pole (124°,-87°) (72°,-49°) or (242°,-46°)

We can see rapid rotation periods, as it is often the case for asteroids. The locations of the poles mean that their rotations
are retrograde, with respect to their orbital motions. Moreover, two solutions best match the pole of 2001 NQ8.

Dating the fission

The other aspect of this study is a numerical simulation of the orbital motion of these two objects, backward in time, to date their separation. Actually, the authors considered 5,000 clones of each of the two objects, to make their results statistically relevant.
They not only considered the gravitational interactions with other objects of the Solar System, but also the Yarkovsky effect, i.e. a thermal pull due to the Sun, which depends on the reflectivity of the asteroids, and favors their separation. For that, they propose new equations implementing this effect. They also simulated the variations of the spin pole orientation, since it affects the thermal acceleration.

And here is the result: the fission probably occurred 16,340 ± 40 years ago.

Perspectives

Why doing that? Because what we see is the outcome of an asteroid fission, which occurred recently. The authors honestly admit that this result could be refined in the future, depending on

  • Possible future measurements of the Yarkovsky acceleration of one or two of these bodies,
  • The consideration of the mutual interactions between Rheinland and 2001 NQ8,
  • Refinements of the presented measurements,
  • Discovery of a third member?

To date the fission, they dated a close approach between these two bodies. They also investigated the possibility that that
close approach, some 16,000 years from now, could have not been the right one, and that the fission could have been much older. For that, they ran long-term simulations, which suggest that older close approaches should have been less close: if the pair were older, Yarkovsky would have separated it more.

To know more

And that’s it for today! Please do not forget to comment. You can also subscribe to the RSS feed, and follow me on Twitter and Facebook.

Enceladus lost its balance

Hi there! Today I will present you True polar wander of Enceladus from topographic data, by Tajeddine et al., which has recently been published in Icarus. The idea is this: Enceladus is a satellite of Saturn which has a pretty stable rotation axis. In the past, its rotation axis was already stable, but with a dramatically different orientation, i.e. 55° shifted from the present one! The authors proposed this scenario after having observed the distribution of impact basins at its surface.

Enceladus’s facts

Enceladus is one of the mid-sized satellites of Saturn, it is actually the second innermost of them. It has a mean radius of some 250 km, and orbits around Saturn in 1.37 day, at a distance of ~238,000 km. It is particularly interesting since it presents evidence of past and present geophysical activity. In particular, geysers have been observed by the Cassini spacecraft at its South Pole, and its southern hemisphere presents four pretty linear features known as tiger stripes, which are fractures.

Enceladus seen by Cassini (Credit: NASA / JPL / Space Science Institute).
Enceladus seen by Cassini (Credit: NASA / JPL / Space Science Institute).

Moreover, analyses of the gravity field of Enceladus, which is a signature of its interior, strongly suggest a global, subsurfacic ocean, and a North-South asymmetry. This asymmetry is consistent with a diapir of water at its South Pole, which would be the origin of the geysers. The presence of the global ocean has been confirmed by measurements of the amplitude of the longitudinal librations of its surface, which are consistent with a a crust, that a global ocean would have partially decoupled from the interior.

The rotation of a planetary satellite

Planetary satellites have a particularly interesting rotational dynamics. Alike our Moon, they show on average always the same face to a fictitious observer, which would observe the satellite from the surface of the parent planet (our Earth for the Moon, Saturn for Enceladus). This means that they have a synchronous rotation, i.e. a rotation which is synchronous with their orbit, but also that the orientation of their spin axis is pretty stable.
And this is the key point here: the spin axis is pretty orthogonal to the orbit (this orientation is called Cassini State 1), and it is very close to the polar axis, which is the axis of largest moment of inertia. This means that we have a condition on the orientation of the spin axis with respect to the orbit, AND with respect to the surface. The mass distribution in the satellite is not exactly spherical, actually masses tend to accumulate in the equatorial plane, more particularly in the satellite-planet direction, because of the combined actions of the rotation of the satellites and the tides raised by the parent planet. This implies a shorter polar axis. And the study I present today proposes that the polar axis has been tilted of 55° in the past. This tilt is called polar wander. This result is suggested by the distribution of the craters at the surface of Enceladus.

Relaxing a crater

The Solar System bodies are always impacted, this was especially true during the early ages of the Solar System. And the inner satellites of Saturn were more impacted than the outer ones, because the mass of Saturn tends to attract the impactors, focusing their trajectories.
As a consequence, Enceladus got heavily impacted, probably pretty homogeneously, i.e. craters were everywhere. And then, over the ages, the crust slowly went back to its original shape, relaxing the craters. The craters became then basins, and eventually some of them disappeared. Some of them, but not all of them.
The process of relaxation is all the more efficient when the material is hot. For material which properties strongly depend on the temperature, a stagnant lid can form below the surface, which would partly preserve it from the heating by convection, and could preserve the craters. This phenomenon appears preferably at equatorial latitudes.
This motivates the quest for basins. A way for that is to measure the topography of the surface.

Modeling the topography

The surface of planetary body can be written as a sum of trigonometric series, known as spherical harmonics, in which the radius would depend on 2 parameters, i.e. the latitude and the longitude. This way, you have the radius at any point of the surface. Classically, two terms are kept, which allow to represent the surface as a triaxial ellipsoid. This is the expected shape from the rotational and tidal deformations. If you want to look at mass anomalies, then you have to go further in the expansion of the formula. But to do that, you need data, i.e. measurements of the radius at given coordinates. And for that, the planetologists dispose of the Cassini spacecraft, which made several flybys of Enceladus, since 2005.
Two kinds of data have been used in this study: limb profiles, and control points.
Limb profiles are observations of the bright edge of an illuminated object, they result in very accurate measurements of limited areas. Control points are features on the surface, detected from images. They can be anywhere of the surface, and permit a global coverage. In this study, the authors used 41,780 points derived from 54 limb profiles, and 6,245 control points.
Measuring the shape is only one example of use of such data. They can also be used to measure the rotation of the body, in comparing several orientations of given features at different dates.
These data permitted the authors to model the topography up to the order 16.

The result

The authors identified a set of pretty aligned basins, which would happen for equatorial basins protected from relaxation by stagnant lid convection. But the problem is this: the orientation of this alignment would need a tilt of 55° of Enceladus to be equatorial! This is why the authors suggest that Enceladus has been tilted in the past.

The observations do not tell us anything on the cause of this tilt. Some blogs emphasize that it could be due to an impact. Why not? But less us be cautious.
Anyway, the orientation of the rotation axis is consistent with the current mass distribution, i.e. the polar axis has the largest moment of inertia. Actually, mid-sized planetary satellites like Enceladus are close to sphericity, in the sense that there is no huge difference between the moments of inertia of its principal axes. So, a redistribution of mass after a violent tilt seems to be possible.

To know more

And now the authors:

And that’s it for today! Please do not forget to comment. You can also subscribe to the RSS feed, and follow me on Twitter and Facebook.