Tag Archives: Titan

Tides in the lakes of Titan

Hi there! The satellite of Saturn Titan has hydrocarbon seas, i.e. lakes made of liquid ethane and methane. When you have a sea, or a lake, you may have tides, and this is what this study is about. I present you A numerical study of tides in Titan’s northern seas, Kraken and Ligeia Maria, by David Vincent, Özgür Karatekin, Jonathan Lambrechts, Ralph D. Lorenz, Véronique Dehant, and Éric Deleersnijder, which has recently been accepted for publication in Icarus.

The lakes of Titan

The presence of hydrocarbons in such a thick atmosphere as the one of Titan has suggested since the spacecraft Voyager 1 than methane and ethane could exist in the liquid state on the surface of Titan. There could even be a cycle of methane, as there is a hydrological cycle on Earth, in which the liquid methane on the surface feeds the clouds of gaseous methane in the atmosphere, and conversely.

The spacecraft Cassini has detected dark smooth features, which revealed to be these hydrocarbon seas. Here is a list of the largest ones:

Location Diameter
Kraken Mare 68.0°N 310.0°W 1,170 km
Ligeia Mare 79.0°N 248.0°W 500 km
Punga Mare 85.1°N 339.7°W 380 km
Jingpo Lacus 73.0°N 336.0°W 240 km
Ontario Lacus 72.0°S 183.0°W 235 km
Mackay Lacus 78.32°N 97.53°W 180 km
Bolsena Lacus 75.75°N 10.28°W 101 km

I present you only the detected lakes with a diameter larger than 100 km, but some have been detected with a diameter as small as 6 km. It appears that these lakes are located at high latitudes, i.e. in the polar regions. Moreover, there is an obvious North-South asymmetry, i.e. there are much more lakes in the Northern hemisphere than in the Southern one. This could be due to the circulation of clouds of Titan: they would form near the equator, from the evaporation of liquid hydrocarbons, and migrate to the poles, where they would precipitate (i.e. rain) into lakes. Let us now focus on the largest two seas, i.e. Kraken and Ligeia Maria.

Kraken and Ligeia Maria

Kraken and Ligeia Maria are two adjacent seas, which are connected by a strait, named Trevize Fretum, which permit liquid exchanges. Kraken is composed of two basins, named Kraken 1 (north) and Kraken 2 (south), which are connected by a strait named Seldon Fretum, which dimensions are similar to the strait of Gibraltar, between Morocco and Spain.

Kraken and Ligeia Maria. © NASA
Kraken and Ligeia Maria. © NASA

Alike the Moon and Sun which raise tides on our seas, Saturn raises tides on the lakes. These tides cannot be measured yet, but they can be simulated, and this is what the authors did. In a previous study, they had simulated the tides on Ontario Lacus.

They honestly admit that the tides on Kraken and Ligeia Maria have already been simulated by other authors. Here, they use a more efficient technique, i.e. which uses less computational resources, and get consistent results.

Numerical modeling with SLIM

Computational fluid dynamics, often referred as CFD, is far from an easy task. The reason is that the dynamics of fluids in ruled by non-linear partial derivative equations like the famous Navier-Stokes, i.e. equations which depend on several variables, like the time, the temperature, the location (i.e. where are you exactly on the lake?), etc. Moreover, they depend on several parameters, some of them being barely constrained. We accurately know the gravitational tidal torque due to Saturn, however we have many uncertainties on the elasticity of the crust of Titan, on the geometry of the coast, on the bathymetry, i.e. the bottom of the seas. So, several sets of parameters have to be considered, for which numerical simulations should be run.

It is classical to use a finite element method for problems of CFD (Computational Fluid Dynamics, remember?). This consists to model the seas not as continuous domains, but as a mesh of finite elements, here triangular, on which the equations are defined.
The structure of the mesh is critical. A first, maybe intuitive, approach would be to consider finite elements of equal size, but it appears that this way of integrating the equations is computationally expensive and could be optimized. Actually, the behavior of the fluid is very sensitive to the location close to the coasts, but much less in the middle of the seas. In other words, the mesh needs to be tighter at the coasts. The authors built an appropriate mesh, which is unstructured and follow the so-called Galerkin method, which adapts the mesh to the equations.

The authors then integrated the equations with their homemade SLIM software, for Second-generation Louvain-la-Neuve Ice-ocean Model. The city of Louvain-la-Neuve hosts the French speaking Belgian University Université Catholique de Louvain, where most of this study has been conducted. The model SLIM has been originally built for hydrology, to model the behavior of fluids on Earth, and its simulations have been successfully confronted to terrain measurements. It thus makes sense to use it for modeling the behavior of liquid hydrocarbons on Titan.

In this study, the authors used the 2-dimensional shallow water equations, which are depth-integrated. In other words, they directly simulated the surface rather than the whole volume of the seas, which of course requires much less computation time.
Let us now see their results.

Low diurnal tides

The authors simulated the tides over 150 Titan days. A Titan day is 15.95 days long, which is the orbital period of Titan around Saturn. During this period, the distance Titan-Saturn varies between 1,186,680 and 1,257,060 km because the orbit of Titan is eccentric, and so does the intensity of the tidal torque. This intensity also varies because of the obliquity of Titan, i.e. the tilt of its rotation axis, which is 0.3°. Because of these two quantities, we have a period of variation of 15.95 days, and its harmonics, i.e. half the period, a third of the period, etc.

It appeared from the simulations that the 15.95-d response is by far the dominant one, except at some specific locations where the tides cancel out (amphidromic points). The highest tides are 0.29 m and 0.14 m in Kraken and Ligeia, respectively.

Higher responses could have been expected in case of resonances between eigenmodes of the fluids, i.e. natural frequencies of oscillations, and the excitation frequencies due to the gravitational action of Saturn. It actually appeared that the eigenmodes, which have been computed by SLIM, have much shorter periods than the Titan day, which prevents any significant resonance. The author did not consider the whole motion of Titan around Saturn, in particular the neglected planetary perturbations, which would have induced additional exciting modes. Anyway, the corresponding periods would have been much longer than the Titan day, and would not have excited any resonance. They would just have given the annual variations of tides, with a period of 29.4 years, which is the orbital period of Saturn around the Sun.

Fluid exchanges between the lakes

SLIM permits to trace fluid particles, which reveals the fluid exchanges between the basins. Because of their narrow geometry, the straits are places where the currents are the strongest, i.e. 0.3 m/s in Seldon Fretum.
The volumetric exchanges are 3 times stronger between Kraken 1 and Kraken 2 than between Kraken and Ligeia. These exchanges behave as an oscillator, i.e. they are periodic with respect to the Titan day. As a consequence, there is a strong correlation between the volume of Kraken 1, and the one of Kraken 2. Anyway, these exchanges are weak with respect to the volume of the basins.

The attenuation is critical

The authors studied the influence of the response with respect to different parameters: the bathymetry of the seas (i.e., the geometry of the bottom), the influence of bottom friction, the depth of Trevize Fretum, and the attenuation factor γ2, which represents the viscoelastic response of the surface of Titan to the tidal excitation. It appears that γ2 plays a key role. Actually, the maximum tidal range is an increasing function of the attenuation, and in Seldon and Trevize Fretum, the maximum velocities behave as a square root of γ2. It thus affects the fluid exchanges. Moreover, these exchanges are also affected by the depth of Trevize Fretum, which is barely constrained.

Another mission to Titan is needed to better constrain these parameters!

The study and its authors

And that’s it for today! Please do not forget to comment. You can also subscribe to the RSS feed, and follow me on Twitter and Facebook. And let me wish you a healthy and happy year 2018.

Water-ice boundary on Titan

Hi there! Titan may be the most famous satellite in the Solar System, I realize that I never devoted a post to it. It is high time to make it so. I present you Does Titan’s long-wavelength topography contain information about subsurface ocean dynamics? by Jakub Kvorka, Ondřej Čadek, Gabriel Tobie & Gaël Choblet, which has recently been accepted for publication in Icarus. This paper tries to understand the mechanisms responsible for the location of the boundary between the icy crust and the subsurface ocean. This affects the thickness of the crust, which itself affects the topography of Titan.

Titan

The existence of Titan is known since 1655 thanks to the Dutch astronomer Christiaan Huygens. It was the only known satellite of Saturn until the discovery of Iapetus in 1671. It is the second largest natural satellite of the Solar System (mean radius: 2,575 km), and it orbits Saturn in almost 16 days, on a 3% eccentric and almost equatorial orbit (actually, a small tilt is due to the gravitational influence of the Sun).

It has interesting physical characteristics:

  • A thick atmosphere (pressure at the surface: 1.5 bar) mainly composed of nitrogen, with clouds of methane and ethane.
  • A complex surface. We can find hydrocarbon seas, i.e. lakes of methane and ethane (Kraken Mare, Ontario Lacus…), we also have a mountain chain, which features have been named after Tolkien’s Lords of the Rings (Gandalf Colles, Erebor Mons,…). There are some impact craters as well, but not that many, which suggests a geologically young surface. There is probably cryovolcanism on Titan, i.e. eruptions of volatile elements. The surface and the atmosphere interact, i.e. there are exchange between the liquid methane and ethane of the lakes and the gaseous ones present in the atmosphere, and the atmosphere is responsible for erosion of the surface, for winds which are likely to create dunes, and for heat exchanges.
  • A global subsurface ocean, lying under the icy crust.
Map of Titan.
Map of Titan.

The quest for the internal ocean

An internal, water ocean is considered to be of high interest for habitability, i.e. we cannot exclude the presence of bacteriological life in such an environment. This makes Titan one of the priority targets for future investigations.

The presence of the ocean was hinted long ago, from the consideration that, at some depth, the water ice covering the surface would be in such conditions of temperature and pressure that it should not be solid anymore, but liquid. The detection of this ocean has been hoped from the Cassini-Huygens mission, and this was a success. More precisely:

  • The rotation of the surface of Titan is synchronous, i.e. Titan shows on average the same face to Saturn, like our Moon, but with a significant obliquity (0.3°), which could reveal the presence of a global ocean which would decouple the rotation of the crust from the one of the core.
  • A Schumann resonance, i.e. an electromagnetic signal, has been detected by the lander Huygens in the atmosphere of Titan, during its fall. This could be due to an excitation of a magnetic field by a global conductive layer, i.e. a global subsurface ocean.
  • The gravitational Love number k2, which gives the amplitude of the response of the gravity field of Titan to the variations of the gravitational attraction of Saturn, is too large to be explained by a fully solid Titan.

All of these clues have convinced almost all of the scientific community that Titan has a global subsurface ocean. Determining its depth, thickness, composition,… is another story. In the study I present you today, the authors tried to elucidate the connection between its depth and the surface topography.

Modeling the ice-water boundary

The authors tried to determine the depth of the melting point of the water ice with respect to the latitude and longitude. This phase boundary is the thickness of the icy crust. For that, they wrote down the equations governing the viscoelastic deformation of the crust, its thermal evolution, and the motion of the boundary.

The viscoelastic deformation, i.e. deformation with dissipation, is due to the varying tidal action of Saturn, and the response depends on the properties of the material, i.e. rigidity, viscosity… The law ruling the behavior of the ice is here the Andrade law… basically it is a Maxwell rheology at low frequencies, i.e. elastic behavior for very slow deformations, viscoelastic behavior when the deformations gets faster… and for very fast excitation frequencies (tidal frequencies), the Maxwell model, which is based on one parameter (the Maxwell time, which gives an idea of the period of excitation at the transition between elastic and viscoelastic behavior), underestimates the dissipation. This is where the more complex Andrade model is useful. The excitation frequencies are taken in the variations of the distance Titan-Saturn, which are ruled by the gravitational perturbations of the Sun, of the rings, of the other satellites…

These deformations and excitations are responsible for variations of the temperature, which are also ruled by physical properties of the material (density, thermal conductivity), and which will determine whether the water should be solid or liquid. As a consequence, they will induce a motion of the phase change boundary.

Resolution by spectral decomposition

The equations ruling the variables of the problem are complex, in particular because they are coupled. Moreover, we should not forget that the density, thickness, temperature, resulting heat flows… not only depend on time, but also on where you are on the surface of Titan, i.e. the latitude and the longitude. To consider the couplings between the different surface elements, the authors did not use a finite-element modeling, but a spectral method instead.

The idea is to consider that the deformation of the crust is the sum of periodic deformations, with respect to the longitude and latitude. The basic shape is a sphere (order 0). If you want to be a little more accurate, you say that Titan is triaxial (order 2). And if you want to be more accurate, you introduce higher orders, which would induce bulges at non equatorial latitudes, north-south asymmetries for odd orders, etc. It is classical to decompose the tidal potential under a spectral form, and the authors succeeded to solve the equations of the problem in writing down the variables as sums of spherical harmonics.

The role of the grain size

And the main result is that the grain size of the ice plays a major role. In particular, the comparison between the resulting topography and the one measured by the Cassini mission up to the 3rd order shows that we need grains larger than 10 mm to be consistent with the observations. The authors reached an equilibrium in at the most 10 Myr, i.e. the crust is shaped in a few million years. They also addressed the influence of other parameters, like the rigidity of the ice, but with much less significant outcomes. Basically, the location of the melting / crystallization boundary is ruled by the grain size.

In the future

Every new study is another step forward. Others will follow. At least two directions can be expected.

Refinements of the theory

The authors honestly admit that the presence of other compounds in the ocean, like ammonia, is not considered here. Adding such compounds could affect the behavior of the ocean and the phase boundary. This would require at least one additional parameter, i.e. the fraction of ammonia. But the methodology presented here would still be valid, and additional studies would be incremental improvements of this one.
A possible implication of these results is the ocean dynamics, which is pretty difficult to model.

More data?

Another step forward could come from new data. Recently the mission proposal Dragonfly has been selected as a finalist by the NASA’s New Frontiers program. It would be a rotorcraft lander on Titan. Being selected as a finalist is a financial encouragement to refine and mature the concept within the year 2018, before final decision in July 2019 (see video below).

The study and its authors

And that’s it for today! Please do not forget to comment. You can also subscribe to the RSS feed, and follow me on Twitter and Facebook.

Resonances around the giant planets

Hi there! Today the release of the paper Classification of satellite resonances in the Solar System, by Jing Luan and Peter Goldreich, is the opportunity for me to present you the mean-motion resonances in the system of satellites of the giant planets. That paper has recently been published in The Astronomical Journal, but the topic it deals with is present in the literature since more than fifty years. This is why I need to detail some of the existing works.

The mean-motion resonances (MMR)

Imagine that you have a planet orbited by two satellites. In a convenient case, their orbits will be roughly elliptical. The ellipse results from the motion of a small body around a large spherical one; deviations from the exact elliptical orbit come from the oblateness of the central body and the gravitational perturbation of the other satellite. If the orbital frequencies of the two satellites are commensurate, i.e. if Satellite A accomplishes N revolutions around the planet, while Satellite B accomplishes (almost exactly) M revolutions, i.e. M orbits, N and M being integers, then the 2 satellites will be in a configuration of mean-motion resonance. It can be shown that the perturbation of A on B (respectively of B on A) will not average to 0 but have a cumulative effect, due to the repetition, at the same place, of the smallest distance between the two bodies, the smallest distance meaning the highest gravitational torque. A consequence of a MMR is the increase of the eccentricity of one of the satellites, or of both of them, and / or their inclinations… or only the inclination of one of them. In the worst case, this could result in the ejection of one of the satellites, but it can also have less catastrophic but not less interesting consequences, like the heating of a body, and the evolution of its internal structure… We will discuss that a little later.

A mean-motion resonance can be mathematically explained using the orbital elements, which describe the orbit of a satellite. These elements are

  • The semimajor axis a,
  • the eccentricity e. e=0 means that the orbit is circular, while e<1 means that the orbit is elliptical. For planetary satellites, we usually have e<0.05. With these two elements, we know the shape of the orbit. We now need to know its orientation, which is given by 3 angles:
  • the inclination i, with respect to a given reference plane. Usually it is the equatorial plane of the parent planet at a given date, and the inclination are often small,
  • the longitude of the ascending node Ω, which orientates the intersection of the orbital plane with the reference plane,
  • the longitude of the pericentre ϖ, which gives you the pericentre, i.e. the point at which the distance planet-satellite is the smallest. With these 5 elements, you know the orbit. To know where on its orbit the satellite is, you also need
  • the mean longitude λ.

Saying that the Satellites A and B are in a MMR means that there is an integer combination of orbital elements, such as φ=pλA-(p+q)λA+q1ϖA+q2ϖB+q3ΩA+q4ΩB, which is bounded. Usually an angle is expected to be able to take any real value between 0 and 2π radians, i.e. between 0 and 360°, but not our φ. The order of the resonance q is equal to q1+q2+q3+q4, and q3+q4 must be even. Moreover, it stems from the d’Alembert rule, which I will not detail here, that a strength can be associated with this resonance, which is proportional to eAq1eBq2iAq3iBq4. This quantity also gives us the orbital elements which would be raised by the resonance.

In other words, if the orbital frequency of A is twice the one of B, then we could have the following resonances:

  • λA-2λBA (order 1), which would force eA,
  • λA-2λBB (order 1), which would force eB,
  • A-4λBAB (order 2), which would force eA and eB,
  • A-4λB+2ΩA (order 2), which would force iA,
  • A-4λB+2ΩB (order 2), which would force iB,
  • A-4λB+2ΩAB (order 2), which would force iA and iB.

Higher-order resonances could be imagined, but let us forget them for today.

The next two figures give a good illustration of the way the resonances can raise the orbital elements. All of the curves represent possible trajectories, assuming that the energy of the system is constant. The orbital element which is affected by the resonance, can be measured from the distance from the origin. And we can see that the trajectories tend to focus around points which are not at the origin. These points are the centers of libration of the resonances. This means that when the system is at the exact resonance, the orbital element relevant to it will have the value suggested by the center of libration. These plots are derived from the Second Fundamental Model of the Resonance, elaborated at the University of Namur (Belgium) in the eighties.

The Second Fundamental Model of the Resonance for order 1 resonances, for different parameters. On the right, we can see banana-shaped trajectories, for which the system is resonant. The outer zone is the external circulation zone, and the inner one is the internal circulation zone. Inspired from Henrard J. & Lemaître A., 1983, A second fundamental model for resonance, Celestial Mechanics, 30, 197-218.
The Second Fundamental of the Resonance for order 2 resonances, for different parameters. We can see two resonant zones. On the right, an internal circulation zone is present. Inspired from Lemaître A., 1984, High-order resonances in the restricted three-body problem, Celestial Mechanics, 32, 109-126.

Here, I have only mentioned resonances involving two bodies. We can find in the Solar System resonances involving three bodies… see below.

It appears, from the observations of the satellites of the giant planets, that MMR are ubiquitous in our Solar System. This means that a mechanism drives the satellite from their initial position to the MMRs.

Driving the satellites into resonances

When the satellites are not in MMR, the argument φ circulates, i.e. it can take any value between 0 and 2π. Moreover, its evolution is monotonous, i.e. either constantly increasing, or constantly decreasing. However, when the system is resonant, then φ is bounded. It appears that the resonance zones are levels of minimal energy. This means that, for the system to evolve from a circulation to a libration (or resonant zone), it should loose some energy.

The main source of energy dissipation in a system of natural satellites is the tides. The planet and the satellites are not exactly rigid bodies, but can experience some viscoelastic deformation from the gravitational perturbation of the other body. This results in a tidal bulge, which is not exactly directed to the perturber, since there is a time lag between the action of the perturber and the response of the body. This time lag translates into a dissipation of energy, due to tides. A consequence is a secular variation of the semi-major axes of the satellites (contraction or dilatation of the orbits), which can then cross resonances, and eventually get trapped. Another consequence is the heating of a satellite, which can yield the creation of a subsurface ocean, volcanism…

Capture into a resonance is actually a probabilistic process. If you cross a resonance without being trapped, then your trajectories jump from a circulation zone to another one. However, if you are trapped, you arrive in a libration zone, and the energy dissipation can make you spiral to the libration center, forcing the eccentricity and / or inclination. It can also be shown that a resonance trapping can occur only if the orbits of the two satellites converge.

The system of Jupiter

Jupiter has 4 large satellites orbiting around: J1 Io, J2 Europa, J3 Ganymede, and J4 Callisto. There are denoted Galilean satellites, since they were discovered by Galileo Galilei in 1610. The observations of their motion has shown that

  • Io and Europa are close to the 2:1 MMR,
  • Europa and Ganymede are close to the 2:1 MMR as well,
  • Ganymede and Callisto are close to the 7:3 MMR (De Haerdtl inequality)
  • Io, Europa and Ganymede are locked into the Laplace resonance. This is a 3-body MMR, which resonant argument is φ=λ1-3λ2+2λ3. It librates around π with an amplitude of 0.5°.

This Laplace resonance is a unique case in the Solar System, to the best of our current knowledge. It is favored by the masses of the satellites, which have pretty the same order of magnitude. Moreover, Io shows signs of intense dissipation, i.e. volcanism, which were predicted by Stanton Peale in 1979, before the arrival of Voyager I in the vicinity of Jupiter, from the calculation of the tidal effects.

The system of Saturn

Besides the well-known rings and a collection of small moons, Saturn has 8 major satellites, i.e.

  • S1 Mimas,
  • S2 Enceladus,
  • S3 Tethys,
  • S4 Dione,
  • S5 Rhea,
  • S6 Titan,
  • S7 Hyperion,
  • S8 Iapetus,

and resonant relations, see the following table.

Satellite 1 Satellite 2 MMR Argument φ Libration center Libration amplitude Affected quantities
S1 Mimas S3 Tethys 4:2 1-4λ313 0 95° i1,i3
S2 Enceladus S4 Dione 2:1 λ2-2λ42 0 0.25° e2
S6 Titan S7 Hyperion 4:3 6-4λ77 π 36° e7

The amplitude of the libration tells us something about the age of the resonance. Dissipation is expected to drive the system to the center of libration, where the libration amplitude is 0. However, when the system is trapped, the transition from circulation to libration of the resonant argument φ induces that the libration amplitude is close to π, i.e. 180°. So, the dissipation damps this amplitude, and the measured amplitude tells us where we are in this damping process.

This study

This study aims at reinvestigating the mean-motion resonances in the systems of Jupiter and Saturn in the light of a quantity, kcrit, which has been introduced in the context of exoplanetary systems by Goldreich & Schlichting (2014). This quantity is to be compared with a constant of the system, in the absence of dissipation, and the comparison will tell us whether an inner circulation zone appears or not. In that sense, this study gives an alternative formulation of the results given by the Second Fundamental Model of the Resonance. The conclusion is that the resonances should be classified into two groups. The first group contains Mimas-Tethys and Titan-Hyperion, which have large libration amplitudes, and for which the inner circulation zone exists (here presented as overstability). The other group contains the resonances with a small amplitude of libration, i.e. not only Enceladus-Dione, but also Io-Europa and Europa-Ganymede, seen as independent resonances.

A possible perspective

Io-Europa and Europa-Ganymede are not MMR, and they are not independent pairs. They actually constitute the Io-Europa-Ganymede resonance, which is much less documented than a 2-body resonance. An extensive study of such a resonance would undoubtedly be helpful.

Some links

  • The paper, i.e. Luan J. & Goldreich P., 2017, Classification of satellite resonances in the Solar System, The Astronomical Journal, 153:17.
  • The web page of Jing Luan at Berkeley.
  • The web page of Peter Goldreich at Princeton.
  • The Second Fundamental Model of the Resonance, for order 1 resonances and for higher orders.
  • A study made in Brazil by Nelson Callegary and Tadashi Yokoyama, on the same topic: Paper 1 Paper 2, also made available by the authors here and here, thanks to them for sharing!.