Hi there! Today we will detail a recent study by Jessica Agarwal and Michael Mommert, entitled Nucleus of active asteroid 358P/Pan-STARRS (P/2012 T1). This study has recently been accepted for publication in Astronomy and Astrophysics, and consists in increasing our knowledge of a recently discovered object, i.e. P/2012 T1. This object proved to have some activity, like a comet. The authors realized several observations to try to characterize its activity, and infer some physical properties like its size and its rotation.
Outline
Comet vs. active asteroid
The asteroid P/2012 T1
New observations
Measuring its rotation
Dust emission
A 530m-large body
The study and its authors
Comet vs. active asteroid
First of all, I would like to make clear what is a comet, and what is an active asteroid. I am very ambitious here, since these two notions actually overlap. For instance, our object is both an active asteroid, and a main-belt comet.
Let us say that a comet is an active asteroid, while an active asteroid is not necessarily a comet. The difference is in the nature of the activity.
A comet is a dirty snowball, i.e. you have water ice, and some silicates. Its orbit around the Sun is usually pretty eccentric, so that you have large variations of the distance Sun-object. The location of the orbit, at which the distance is the smallest, is called pericentre. When the comet approaches the pericentre, it approaches the Sun, heats, and part of its water ice sublimates. This results in a dusty tail (actually there are two tails, one being composed of ionized particles).
But when you see dust around a small body, i.e. when you see activity, this is not necessarily ice sublimation. There could be for instance rock excavated by an impact, or material expelled by fast rotation. In that case, you still have an active asteroid, but not a comet. One of the goals of this study is to address the cause and nature of P/2012 T1’s activity.
The asteroid P/2012 T1
P/2012 T1, now named 358P, has been discovered in October 2012 by the Pan-STARRS-1 survey. Pan-STARRS stands for Panoramic Survey Telescope and Rapid Response System, it uses dedicated facilities at Haleakala Observatory, Hawaii, USA.

Its provisional name, P/2012 T1, contains information on the nature of the object, and its discovery. P stands for periodic comet, 2012 is the year of the discovery, and T means that it has been discovered during the first half of October.
Interestingly, this object appeared on images taken in December 2001 at Palomar Observatory in California, while acquiring data for the survey NEAT (Near-Earth Asteroid Tracking).
You can find below its orbital elements, from the Minor Planet Center:
Semi-major axis | 3.1504519 AU |
---|---|
Eccentricity | 0.2375768 |
Inclination | 11.05645° |
Period | 5.59 y |
From its orbital dynamics, it is a Main-Belt object. As a comet, it is a Main-Belt Comet.
New observations
Once an object is known and we know where it is, it is much easier to reobserve it. The authors conducted observations of 358P from the Southern Astrophysical Research (SOAR) telescope, and the Very Large Telescope.
The SOAR telescope is based on Cerro Pachón, Chile. This is a 4.1-m aperture facility, located at an altitude of 2,700 m. The authors took images with the Goodman High Throughput Spectrograph during one night, from July 27 to July 28, 2017. They wanted to analyze the reflected light by the asteroid at different wavelengths, unfortunately the observational constraints, i.e. cloud coverage, permitted only two hours of observations. Only the observations made with the VR filter, centered at 610 nm, were useful.
These data were supplemented by 77 images taken during 10 hours from August 17 to August 18, 2017, at the Very Large Telescope. This instrument depends on the European Southern Observatory (ESO), and is located on Cerro Paranal, once more in Chile, at an altitude of 2,635 m. The authors used the FOcal Reducer and low dispersion Spectrograph 2 (FORS2), which central wavelength is 655 nm.
The observations give raw images. The authors treated them to get reliable photometric and astrometric measurements of 358P, i.e. they corrected from the variations of the luminosity of the sky, in using reference stars, and from the possible instrumental problems. For that, they recorded the response of the instrument to a surface of uniform brightness, and used the outcome to correct their images.
Let us now address the results.
Measuring its rotation
Such a small (sub-kilometric) body is not spherical. This results in variations of luminosity, which depend on the surface element which is actually facing your telescope. If you acquire data during several spin periods of the asteroid, then you should see some periodicity in the recorded lightcurve.
The best way to extract the periods is to make a Fourier transform. Your input is the time-dependent lightcurve you have recorded, and your output is a frequency-dependent curve, which should emphasize the periods, which are present in the recorded lightcurve. If the signal is truly periodic, then it should exhibit a maximum at its period and its harmonics (i.e. twice the period, thrice the period, etc.), and almost 0 outside (not exactly 0 since you always have some noise).
In the case of 358P, the authors did not identify any clear period. A maximum is present for a rotation period of 8 hours, but the result is too noisy to be conclusive. A possible explanation could be that we have a polar view of the asteroid. Another possibility is that the albedo of the asteroid (the fraction of reflected light) is almost uniform.
Dust emission
The authors tried to detect debris around the nucleus of the comet, in widening the aperture over which the photometry was performed. They got no real detection, which tends to rule out the possibility of non-cometary activity.
A 530m-large body
Finally, the magnitude of the asteroid is the one of a sphere of 530 meters in diameter, with an albedo of 6%. This means that a higher albedo would give a smaller size, and conversely. The albedo depends on the composition of the asteroid, which is unknown, and can be only inferred from other asteroids. The authors assumed it to be a carbonaceous asteroid (C-type), as 75% of the asteroids. If it were an S-type (silicateous) body, then it would be brighter. A wide band spectrum of the reflected light would give us this information.
The study and its authors
- You can find the study here, on Astronomy and Astrophysics’ website. Moreover, the authors uploaded a free version on arXiv, thanks to them for sharing!
- Here is the webpage of the first author, Jessica Agarwal,
- and here the website of Michael Mommert.
And that’s it for today! Please do not forget to comment. You can also subscribe to the RSS feed, and follow me on Twitter, Facebook, Instagram, and Pinterest.