Tag Archives: Planetary formation

Forming the satellites of Uranus

Merry Christmas! Today we discuss how the satellites of Uranus were formed. It is usually thought the satellites of a giant planets formed from a protoplanetary nebula. Originally there was a cloud of gas and dust, mass accumulated in the center to form the planet, and protosatellites were created from the accretion of mass as well. This was well understood for the gas giants like Jupiter, but Uranus is much smaller (23 times lighter). The Swiss study I present today, In situ formation of icy moons of Uranus and Neptune, by Judit Szulágyi, Marco Cilibrasi and Lucio Mayer, solves this problem. This study has recently been published in The Astrophysical Journal Letters.

The satellites of Uranus

Uranus has 27 known satellites, which can be classified into 3 groups:

  • the inner moons, which are small satellites embedded in the rings,
  • the main moons, which are mid-sized icy bodies. These are the ones we are interested in today,
  • and the irregular moons, which orbit very far from the planet, and on significantly eccentric and inclined orbits. These bodies are probably former asteroids, which were trapped by the gravitational field of Uranus.

As I said, we are interested in the main 5 satellites, which are listed below. Their semimajor axes are given with respect to the mean equatorial radius of Uranus, which is 25,559 km.

U-5 Miranda U-1 Ariel U-2 Umbriel U-3 Titania U-4 Oberon
Discovery 1948 1851 1851 1787 1787
Semimajor axis 5.062 RU 7.474 RU 10.408 RU 17.055 RU 21.070 RU
Eccentricity 0.0013 0.0012 0.0039 0.0011 0.0014
Inclination 4.232° 0.260° 0.205° 0.340° 0.058°
Orbital period 1.413 d 2.520 d 4.144 d 8.706 d 13.463 d
Diameter 471.6 ± 1.4 km 1157.8 ± 1.2 km 1169.4 ± 5.6 km 1576.8 ± 1.2 km 1522.8 ± 5.2 km
Density 1.20 g/cm3 1.66 g/cm3 1.40 g/cm3 1.72 g/cm3 1.63 g/cm3

As you can see, these 5 bodies are

  • A small one (Miranda), which is pretty close to the planet,
  • two larger ones, Ariel and Umbriel, which orbit further from the planet,
  • and two even larger ones, Titania and Oberon, which orbit even further from the planet.


Titania and Oberon have been discovered in 1787 by the German-British astronomer William Herschel, only 6 years after the same William Herschel discovered Uranus. Actually, Uranus was (and still is) visible to the naked eye, and had been observed many times before. But how to know it was a planet, and not a star? Well, a star does not move in the sky (actually, it does a very little…), while a planet moves. But since Uranus orbits very far from the Sun, its motion is pretty slow. Herschel detected such motion, but he thought at that time that Uranus was a comet. The computation of its motion showed a pretty circular orbit, proving it was a planet.
After that, Uranus has been observed many times, and Herschel noticed two dots following Uranus. Since they followed Uranus, it meant they were gravitationally bound to it, hence satellites. These two dots were the two largest of them, i.e. Titania and Oberon.

Seventy years after the discovery of Uranus, the British merchant and astronomer William Lassell, who by the way made his fortune as a beer brewer, built his own telescope. He polished himself the mirror, and pioneered the use of the equatorial mount, which facilitated the tracking of objects with respect to the rotation of the Earth. His telescope permitted him to discover the satellite of Neptune Triton, to co-discover the satellite of Saturn Hyperion, and to discover the satellites of Uranus Ariel and Umbriel.

For Miranda, we had to wait for the Dutch-American astronomer Gerard (Gerrit) Peter (Pieter) Kuiper. He discovered Miranda in 1948 and the satellite of Neptune Nereid in 1949, at McDonald Observatory (TX, USA). Kuiper is mostly known for having proposed the existence of the so-called Kuiper Belt, i.e. a belt of asteroids orbiting beyond the orbit of Neptune. He has also been the thesis advisor of Carl Sagan.


Let us go back to the table, and have a look at their properties. We can see that these bodies have small eccentricities and inclinations, i.e. they orbit in the equatorial plane of Uranus, on pretty circular orbits. There is anyway an exception to this rule, which is the significant inclination of Miranda (4.2°). This inclination has probably been excited by a past 3:1 mean motion resonance with Umbriel.

Another interesting point is the density of these bodies. 1g/cm3 means a composition close to water. Pure water ice would be a little less dense. Here we have densities between 1 and 2, which means that these bodies are mixtures of ice and silicates.

This property they share is a clue, which suggests a common formation process. Let us investigate the formation from the protoplanetary disk.

From the disk to the satellites

Let us figure out how a giant planet is formed. First you have a protoplanetary nebula, made of gas and dust. Matter accumulates and aggregates at its center, creating a star (if the nebula is massive enough). To compensate this accumulation at the center (conservation of the total angular momentum), the matter which is still outside the star accelerates, and the nebula becomes a disk, which orbits the star.
Then (may be a little meanwhile, actually), you have local accretions of matter, which create the planets. And sometimes, if you have enough matter, then you have a circumplanetary disk around some of the planets, in which matter aggregates… and creates the satellites! Well, this way, it seems to be easy.
One question is: how massive need the protoplanetary disk to be, to create the satellites. It was known that it works for Jupiter. This study wonders whether it works for Uranus.

Hydrodynamic simulations

To answer this question, the authors ran intensive numerical simulations, using the hydrocode JUPITER. By hydrocode I mean that it simulates a hydrodynamic system.

Actually, a disk is made of particles of gas and dust. It is highly challenging, even if it is sometimes tried, to consider all the particles constituting it, and model their motion and their interactions. Instead, you can consider that the whole disk acts as a gas, and model the collisions between the particles as a viscosity.

Simulating this motion requires to split the disk into cells, use the method of finite elements, i.e. the state of a given part of the disk depends on the state of its neighbors… This requires intensive computing facilities. In JUPITER, you can focus on a given region, for instance where a planet is created.

The authors ran 25,000 simulations, depending on the following parameters:

  • the disk dispersion timescale,
  • the dust-to-gas ratio,
  • the dust refilling timescale: when dust accumulates at the center to create the planet, the disk needs to reach a new equilibrium. This parameter controls the velocity of this process,
  • the distance from the planet where the first proto-satellites are created,
  • the initial temperature of the central planet.

It appeared that this temperature, set to 1000K, 500K and 100K, plays a critical role in the possibility to create the satellites. Consider this effect is possible in JUPITER since 2016 and the implementation of a module, which models the radiative transfer in the disk. As a consequence, it models the effects of the heating and cooling of the gas.

Yes, it is possible!

The simulations show that the circumplanetary gaseous disk was formed when the temperature dropped below 500K (227°C, or 441°F). In that case, icy moons were formed in most of the simulations, which strongly suggests that the present satellites of Uranus were formed that way.

What about Neptune?

Neptune is somehow like Uranus, by its size. This is why the authors ran similar simulations, which showed similar results, i.e. formation of icy, mid-sized satellites. But wait, this is not what we see.

When we observe the system of Neptune, we see a large satellite, Triton, which is highly inclined, on a retrograde orbit. As we discussed here, Triton behaved like a cuckoo.

The satellite of Neptune Triton seen by Voyager 2 in 1989. © NASA
The satellite of Neptune Triton seen by Voyager 2 in 1989. © NASA

Triton was an asteroid, which has been trapped in the gravity field of Neptune. Then it was so massive than it ejected the satellites, which were present… if they existed. What this study tells us is that they probably existed. Nereid was probably one of them. Where are the others now? In my opinion, they could be almost anywhere, since the Solar System is a mess.

The study and its authors

And that’s it for today! Please do not forget to comment. You can also subscribe to the RSS feed, and follow me on Twitter, Facebook, Instagram, and Pinterest.

Forming Mars

Hi there! Of course, you know the planet Mars. You can here from it these days, since it is exceptionally close to our Earth. Don’t worry, this is a natural, geometrical phenomenon.

Anyway, it is a good time to observe it. But I will not speak of observing it, today. We will discuss its formation instead, because the issue of the formation of Mars remains a challenge. This is the opportunity to present The curious case of Mars’ formation, by James Man Yin Woo, Ramon Brasser, Soko Matsumura, Stephen J. Mojzsis, and Shigeru Ida. Astronomy and Astrophysics will publish it pretty soon.

Mars is too small

The following table gives you comparative characteristics of Venus, the Earth, and Mars.

Venus Earth Mars
Semimajor axis 0.723 AU 1.000 AU 1.524 AU
Eccentricity 0.007 0.017 0.093
Inclination 3.39° 1.85°
Orbital period 224.7 d 365.25 d 686.96 d
Spin period -243.02 d 23.93 h 24.62 h
Mean diameter 12,104 km 12,742 km 6,779 km

The last line reveals a problem: Venus and the Earth are about the same size, while Mars is much smaller! But this is not the only problem: the compositions of the Earth and Mars are VERY different.

It is pretty easy to know the composition of the Earth: you just analyze samples. And for Mars? Just the same!

Interestingly, there are Martian meteorites on Earth. These are ejecta from impacts, which were ejected from Mars, and then traveled in the Solar System, until reaching our Earth.

In fact, over the tens of thousands of meteorites which have been found on Earth, a little more than one hundred were significantly different than the other ones, i.e. younger formation ages, a different oxygen isotopic composition, the presence of aqueous weathering products… Most of these meteorites were known as SNC, after the three groups they were classified into:

  • S for Shergottites, after the Shergotty meteorite (India, 1865),
  • N for Nakhlites, after the Nakhla meteorite (Egypt, 1911),
  • C for Chassignites, after the Chassigny meteorite (France, 1815).

Such a significant number of similar meteorites, which are that different from the other ones, suggests they come from a large body. Mars is an obvious candidate, which has been confirmed after the discovery that trapped gases in these meteorites are very similar to the ones, which are present in the atmosphere of Mars.

The Martian meteorite NWA (Northwest Africa) 2046, found in September 2003 in Algeria. This is a Shergottite. © Michael Farmer and Jim Strope.
The Martian meteorite NWA (Northwest Africa) 2046, found in September 2003 in Algeria. This is a Shergottite. © Michael Farmer and Jim Strope.

After that, the numerous space missions improved our knowledge of the Martian composition. And it finally appeared that both planets are essentially made of chondritic material. The Earth should accrete about 70% of enstatite chondrite (and same for the Moon), while Mars only about 50%. Chondrites are non-metallic meteorites, the enstatite chondrites being rich in the mineral enstatite (MgSiO3). These numbers are derived from the documented isotopic compositions of the Earth and Mars, i.e. the ratio of the different chemical elements. An isotope is a variant of a particular chemical element, which differs in neutron number.

If you want to convincingly simulate the formation of Mars, the product of your simulations should be similar to Mars in mass AND in composition. And this is very challenging. Let us see why, but first of all let us recall how to form planets from a disk.

Forming planets from a disk

At its early stage, a planetary system is composed of a proto-star, and a pretty flat disk, made of gas and dust. Then the dust accretes into clumps, which then collides to form planetary embryos, i.e. proto-planets. These embryos continue to grow with collisions, until forming the current planets. Meanwhile, the gas has dissipated.

Anyway, interactions between the protoplanets and between them and the gas can lead to planetary migration. This means that we cannot be sure whether the planets we know formed close to their current location. This makes room for several scenarios.

Two models of planetary formation

The obvious starting point is to assume that the planets formed close to their current locations. This so-called Classical model works pretty well for Venus, the Earth, Jupiter, Saturn… but not for Mars. The resulting Mars is too massive.

An idea for by-passing this problem is to start with a depletion of material at the location of Mars. This is equivalent to an excess inside the terrestrial orbit. In such a configuration, less material is available to the proto-Mars, which eventually has a mass, which is close to the present one.

You can get this excess of material inside the terrestrial orbit if you buy the Grand Tack scenario: when Jupiter formed, it created a gap in the inner disk, and the mutual interaction resulted in an inward migration of Jupiter, until reaching the present orbit of Mars. In moving inward (Type II migration), Jupiter pushed the material inward. Then, a 3:2 mean-motion resonance with Saturn occurred, which created another gap, and made Jupiter move outward, until its present location.

This way, you can form a planetary object, which is similar to Mars in mass and location.

But what about its composition?

The composition challenge

This is still a challenge. The composition of a planetary object is strongly affected by the one of the disk, where the object formed… which may not be its present location.

The authors added a free parameter to the model: the break location, which would split the protoplanetary disk into an inner and an outer region. The inner region would be rich in enstatite chondrites, while the outer one would be rich in ordinary chondrites.

A break location at 1.3 AU gives the best fit for the difference of composition between Mars and the Earth, for both formation scenarios (Classical and Grand Tack).

So, the Grand Tack with a break location at 1.3 AU could be the right scenario. But another possibility exists: the Classical scenario says that if Mars formed where it is, then it should be heavier. But what if Mars formed actually further from the Sun, and then migrated inward? Then, it would not need any depletion of material to have the right mass. And the break barrier should have been further than 1.3 AU. But you have to explain why it migrated inward.

Anticipating the composition

One of the good things with scenarios of formation is that thr gives more details on the outcomes, than actually observed. For instance, this study predicts the isotopic composition of 17O, 50Ti, 54Cr, 142Nd, 64Ni and 92Mo, in the Martian mantle. Further data, collected by space missions, will give additional constraints on these parameters, and test the validity of the present study. 8 missions are currently operational in orbit or on Mars, and InSight is en-route, after having been launched in May 2018. It should land on Mars on November 26, and will study its interior with a seismometer, and a heat transfer probe.

The study and its authors

And that’s it for today! Please do not forget to comment. You can also subscribe to the RSS feed, and follow me on Twitter, Facebook, Instagram, and Pinterest.

Our water comes from far away

Hi there! Can you imagine that our water does not originally come from the Earth, but from the outer Solar System? The study I present you today explains us how it came to us. This is Origin of water in the inner Solar System: Planetesimals scattered inward during Jupiter and Saturn’s rapid gas accretion by Sean Raymond and Andre Izidoro, which has recently been published in Icarus.

From the planetary nebula to the Solar System

There are several competing scenarios, which describe a possible path followed by the Solar System from its early state to its current one. But all agree that there was originally a protoplanetary disk, orbiting our Sun. It was constituted of small particles and gas. Some of the small particles accreted to form the giant planets, first as a massive core, then in accreting some gas around. The proto-Jupiter cleared a ring-shaped gap around its orbit in the disk, Saturn formed as well, the planets migrated, in interacting with the gas. How fast did they migrate? Inward? Outward? Both? Scenarios diverge. Anyway, the gas was eventually ejected, and the protoplanetary disk was essentially cleared, except when it is not. There remains the telluric planets, the giant planets, and the asteroids, many of them constituting the Main Belt, which lies between the orbits of Mars and Jupiter.
If you want to elaborate a fully consistent scenario of formation / evolution of the Solar System, you should match the observations as much as possible. This means matching the orbits of the existing objects, but not only. If you can match their chemistry as well, that is better.

No water below this line!

The origin of water is a mystery. You know that we have water on Earth. It seems that this water comes from the so-called C-type asteroids. These are carbonaceous asteroids, which contain a significant proportion of water, usually between 5 and 20%. This is somehow the same water as on Earth. In particular, it is consistent with the ratios D/H and 15N/14N present in our water. D is the deuterium, it is an isotope of hydrogen (H), while 15N and 14N are two isotopes of nitrogen (N).

These asteroids are mostly present close to the outer boundary of the Main Belt, i.e. around 3.5 AU. An important parameter of a planetary system is the snow line: below a given radius, the water cannot condensate into ice. That makes sense: the central star (in our case, the Sun) is pretty hot (usually more than pretty, actually…), and ice cannot survive in a hot environment. So, you have to take some distance. And the snow line of the Solar System is currently lose to 3.5 AU, where we can find these C-type asteroids. Very well, there is no problem…

But there is one: the location of the snow line changes during the formation of the Solar System, since it depends on the dynamical structure of the disk, i.e. eccentricity of the particles constituting it, turbulence in the gas, etc. in addition to the evolution of the central star, of course. To be honest with you, I have gone through some literature and I cannot tell you where the snow line was at a given date, it seems to me that this is still an open question. But the authors of this study, who are world experts of the question, say that the snow line was further than that when these C-types asteroids formed. I trust them.

And this raises an issue: the C-types asteroids, composed of at least 5% of water, have formed further than they are. This study explains us how they migrated inward, from their original location to their present one.

Planet encounter and gas drag populate the Asteroid Belt

The authors ran intensive numerical simulations, in which the asteroids are massless particles, but with a given radius. This seems weird, but this just means that the authors neglected the gravitational action of the asteroids on the giant planets. The reason why they gave them a size in that it influences the way the gas drag (remember: the early Solar System was full of gas) affects their orbits. This size actually proved to be a key parameter. So, these asteroids were affected by the gas and the giant planets, but in the state they were at that time, i.e. initially Jupiter and Saturn were just slowly accreting cores, and when these cores of solid material reached a critical size, then they were coated by a pretty rapid (over a few hundreds of kyr) accretion of gas. The authors considered only Jupiter in their first simulations, then Jupiter and Saturn, and finally the four giant planets. Their different parameters were:

  • the size of the asteroids (planetesimals),
  • the accretion velocity of the gas around Jupiter and Saturn,
  • the evolution scenario of the early Solar System. In particular, the way the giant planets migrated.

Simulating the formation of the planet actually affects the orbital evolution of the planetesimals, since the mass of the planets is increasing. The more massive the planet, the most deviated the asteroid.

And the authors succeed in putting C-type asteroids with this mechanism: when a planetesimal encounters a proto-planet (usually the proto-Jupiter), its eccentricity reaches high numbers, which threatens its orbital stability around the Sun. But the gas drag damps this eccentricity. So, these two effects compete, and when ideally balanced this results in asteroids in the Main-Belt, on low eccentric orbits. And the authors show that this works best for mid-sized asteroids, i.e. of the order of a few hundreds of km. Below, Jupiter ejects them very fast. Beyond, the gas drag is not efficient enough to damp the eccentricity. And this is consistent with the current observations, i.e. there is only one C-type asteroid larger than 1,000 km, this is the well-known Ceres.

However, the scenarios of evolution of the Solar System do not significantly affect this mechanism. So, it does not tell us how the giant planets migrated.

Once the water ice has reached the main asteroid belt, other mechanism (meteorites) carry it to the Earth, where it can survive thanks to our atmosphere.

Making the exoplanets habitable

This study proposes a mechanism of water delivery, which could be adapted to any planetary system. In particular, it tells us a way to make exoplanetary planets habitable. Probably more to come in the future.

To know more…

  • The study, presented by the first author (Sean N. Raymond) on his own blog,
  • The website of Sean N. Raymond,
  • The IAU page of Andre Izidoro.
  • And I would like to mention Pixabay, which provides free images, in particular the one of Cape Canaveral you see today. Is this shuttle going to fetch some water somewhere?

That’s it for today! Please do not forget to comment. You can also subscribe to the RSS feed, and follow me on Twitter and Facebook.